Volume IV Part 11 (1/2)
”Immediately after a journey of one hundred and twenty-six miles, in which I had no sleep the preceding night, being much exhausted, I respired seven quarts of nitrous oxide gas for near three minutes. It produced the usual pleasurable effects and slight muscular motion. I continued exhilarated for some minutes afterwards, but in half an hour found myself neither more nor less exhausted than before the experiment.
I had a great propensity to sleep.
”To ascertain with certainty whether the more extensive action of nitrous oxide compatible with life was capable of producing debility, I resolved to breathe the gas for such a time, and in such quant.i.ties, as to produce excitement equal in duration and superior in intensity to that occasioned by high intoxication from opium or alcohol.
”To habituate myself to the excitement, and to carry it on gradually, on December 26th I was enclosed in an air-tight breathing-box, of the capacity of about nine and one-half cubic feet, in the presence of Dr.
Kinglake. After I had taken a situation in which I could by means of a curved thermometer inserted under the arm, and a stop-watch, ascertain the alterations in my pulse and animal heat, twenty quarts of nitrous oxide were thrown into the box.
”For three minutes I experienced no alteration in my sensations, though immediately after the introduction of the nitrous oxide the smell and taste of it were very evident. In four minutes I began to feel a slight glow in the cheeks and a generally diffused warmth over the chest, though the temperature of the box was not quite 50 degrees.... In twenty-five minutes the animal heat was 100 degrees, pulse 124. In thirty minutes twenty quarts more of gas were introduced.
”My sensations were now pleasant; I had a generally diffused warmth without the slightest moisture of the skin, a sense of exhilaration similar to that produced by a small dose of wine, and a disposition to muscular motion and to merriment.
”In three-quarters of an hour the pulse was 104 and the animal heat not 99.5 degrees, the temperature of the chamber 64 degrees. The pleasurable feelings continued to increase, the pulse became fuller and slower, till in about an hour it was 88, when the animal heat was 99 degrees. Twenty quarts more of air were admitted. I had now a great disposition to laugh, luminous points seemed frequently to pa.s.s before my eyes, my hearing was certainly more acute, and I felt a pleasant lightness and power of exertion in my muscles. In a short time the symptoms became stationary; breathing was rather oppressed, and on account of the great desire for action rest was painful.
”I now came out of the box, having been in precisely an hour and a quarter. The moment after I began to respire twenty quarts of unmingled nitrous oxide. A thrilling extending from the chest to the extremities was almost immediately produced. I felt a sense of tangible extension highly pleasurable in every limb; my visible impressions were dazzling and apparently magnified, I heard distinctly every sound in the room, and was perfectly aware of my situation. By degrees, as the pleasurable sensations increased, I lost all connection with external things; trains of vivid visible images rapidly pa.s.sed through my mind and were connected with words in such a manner as to produce perceptions perfectly novel.
”I existed in a world of newly connected and newly modified ideas. I theorized; I imagined that I made discoveries. When I was awakened from this semi-delirious trance by Dr. Kinglake, who took the bag from my mouth, indignation and pride were the first feelings produced by the sight of persons about me. My emotions were enthusiastic and sublime; and for a minute I walked about the room perfectly regardless of what was said to me. As I recovered my former state of mind, I felt an inclination to communicate the discoveries I had made during the experiment. I endeavored to recall the ideas--they were feeble and indistinct; one collection of terms, however, presented itself, and, with most intense belief and prophetic manner, I exclaimed to Dr.
Kinglake, 'Nothing exists but thoughts!--the universe is composed of impressions, ideas, pleasures, and pains.' ”(3)
From this account we see that Davy has anaesthetized himself to a point where consciousness of surroundings was lost, but not past the stage of exhilaration. Had Dr. Kinglake allowed the inhaling-bag to remain in Davy's mouth for a few moments longer complete insensibility would have followed. As it was, Davy appears to have realized that sensibility was dulled, for he adds this illuminative suggestion: ”As nitrous oxide in its extensive operation appears capable of destroying physical pain, it may probably be used with advantage during surgical operations in which no great effusion of blood takes place.”(4)
Unfortunately no one took advantage of this suggestion at the time, and Davy himself became interested in other fields of science and never returned to his physiological studies, thus barely missing one of the greatest discoveries in the entire field of science. In the generation that followed no one seems to have thought of putting Davy's suggestion to the test, and the surgeons of Europe had acknowledged with one accord that all hope of finding a means to render operations painless must be utterly abandoned--that the surgeon's knife must ever remain a synonym for slow and indescribable torture. By an odd coincidence it chanced that Sir Benjamin Brodie, the acknowledged leader of English surgeons, had publicly expressed this as his deliberate though regretted opinion at a time when the quest which he considered futile had already led to the most brilliant success in America, and while the announcement of the discovery, which then had no transatlantic cable to convey it, was actually on its way to the Old World.
The American dentist just referred to, who was, with one exception to be noted presently, the first man in the world to conceive that the administration of a definite drug might render a surgical operation painless and to give the belief application was Dr. Horace Wells, of Hartford, Connecticut. The drug with which he experimented was nitrous oxide--the same that Davy had used; the operation that he rendered painless was no more important than the extraction of a tooth--yet it sufficed to mark a principle; the year of the experiment was 1844.
The experiments of Dr. Wells, however, though important, were not sufficiently demonstrative to bring the matter prominently to the attention of the medical world. The drug with which he experimented proved not always reliable, and he himself seems ultimately to have given the matter up, or at least to have relaxed his efforts.
But meantime a friend, to whom he had communicated his belief and expectations, took the matter up, and with unremitting zeal carried forward experiments that were destined to lead to more tangible results.
This friend was another dentist, Dr. W. T. G. Morton, of Boston, then a young man full of youthful energy and enthusiasm. He seems to have felt that the drug with which Wells had experimented was not the most practicable one for the purpose, and so for several months he experimented with other allied drugs, until finally he hit upon sulphuric ether, and with this was able to make experiments upon animals, and then upon patients in the dental chair, that seemed to him absolutely demonstrative.
Full of eager enthusiasm, and absolutely confident of his results, he at once went to Dr. J. C. Warren, one of the foremost surgeons of Boston, and asked permission to test his discovery decisively on one of the patients at the Boston Hospital during a severe operation. The request was granted; the test was made on October 16, 1846, in the presence of several of the foremost surgeons of the city and of a body of medical students. The patient slept quietly while the surgeon's knife was plied, and awoke to astonished comprehension that the ordeal was over. The impossible, the miraculous, had been accomplished.(5)
Swiftly as steam could carry it--slowly enough we should think it to-day--the news was heralded to all the world. It was received in Europe with incredulity, which vanished before repeated experiments.
Surgeons were loath to believe that ether, a drug that had long held a place in the subordinate armamentarium of the physician, could accomplish such a miracle. But scepticism vanished before the tests which any surgeon might make, and which surgeons all over the world did make within the next few weeks. Then there came a lingering outcry from a few surgeons, notably some of the Parisians, that the shock of pain was beneficial to the patient, hence that anaesthesia--as Dr. Oliver Wendell Holmes had christened the new method--was a procedure not to be advised. Then, too, there came a hue-and-cry from many a pulpit that pain was G.o.d-given, and hence, on moral grounds, to be clung to rather than renounced. But the outcry of the antediluvians of both hospital and pulpit quickly received its quietus; for soon it was clear that the patient who did not suffer the shock of pain during an operation rallied better than the one who did so suffer, while all humanity outside the pulpit cried shame to the spirit that would doom mankind to suffer needless agony. And so within a few months after that initial operation at the Boston Hospital in 1846, ether had made good its conquest of pain throughout the civilized world. Only by the most active use of the imagination can we of this present day realize the full meaning of that victory.
It remains to be added that in the subsequent bickerings over the discovery--such bickerings as follow every great advance--two other names came into prominent notice as sharers in the glory of the new method. Both these were Americans--the one, Dr. Charles T. Jackson, of Boston; the other, Dr. Crawford W. Long, of Alabama. As to Dr. Jackson, it is sufficient to say that he seems to have had some vague inkling of the peculiar properties of ether before Morton's discovery. He even suggested the use of this drug to Morton, not knowing that Morton had already tried it; but this is the full measure of his a.s.sociation with the discovery. Hence it is clear that Jackson's claim to equal share with Morton in the discovery was unwarranted, not to say absurd.
Dr. Long's a.s.sociation with the matter was far different and altogether honorable. By one of those coincidences so common in the history of discovery, he was experimenting with ether as a pain-destroyer simultaneously with Morton, though neither so much as knew of the existence of the other. While a medical student he had once inhaled ether for the intoxicant effects, as other medical students were wont to do, and when partially under influence of the drug he had noticed that a chance blow to his s.h.i.+ns was painless. This gave him the idea that ether might be used in surgical operations; and in subsequent years, in the course of his practice in a small Georgia town, he put the idea into successful execution. There appears to be no doubt whatever that he performed successful minor operations under ether some two or three years before Morton's final demonstration; hence that the merit of first using the drug, or indeed any drug, in this way belongs to him. But, unfortunately, Dr. Long did not quite trust the evidence of his own experiments. Just at that time the medical journals were full of accounts of experiments in which painless operations were said to be performed through practice of hypnotism, and Dr. Long feared that his own success might be due to an incidental hypnotic influence rather than to the drug. Hence he delayed announcing his apparent discovery until he should have opportunity for further tests--and opportunities did not come every day to the country pract.i.tioner. And while he waited, Morton antic.i.p.ated him, and the discovery was made known to the world without his aid. It was a true scientific caution that actuated Dr. Long to this delay, but the caution cost him the credit, which might otherwise have been his, of giving to the world one of the greatest blessings--dare we not, perhaps, say the very greatest?--that science has ever conferred upon humanity.
A few months after the use of ether became general, the Scotch surgeon Sir J. Y. Simpson(6) discovered that another drug, chloroform, could be administered with similar effects; that it would, indeed, in many cases produce anaesthesia more advantageously even than ether. From that day till this surgeons have been more or less divided in opinion as to the relative merits of the two drugs; but this fact, of course, has no bearing whatever upon the merit of the first discovery of the method of anaesthesia. Even had some other drug subsequently quite banished ether, the honor of the discovery of the beneficent method of anaesthesia would have been in no wise invalidated. And despite all cavillings, it is unequivocally established that the man who gave that method to the world was William T. G. Morton.
PASTEUR AND THE GERM THEORY OF DISEASE
The discovery of the anaesthetic power of drugs was destined presently, in addition to its direct beneficences, to aid greatly in the progress of scientific medicine, by facilitating those experimental studies of animals from which, before the day of anaesthesia, many humane physicians were withheld, and which in recent years have led to discoveries of such inestimable value to humanity. But for the moment this possibility was quite overshadowed by the direct benefits of anaesthesia, and the long strides that were taken in scientific medicine during the first fifteen years after Morton's discovery were mainly independent of such aid. These steps were taken, indeed, in a field that at first glance might seem to have a very slight connection with medicine. Moreover, the chief worker in the field was not himself a physician. He was a chemist, and the work in which he was now engaged was the study of alcoholic fermentation in vinous liquors. Yet these studies paved the way for the most important advances that medicine has made in any century towards the plane of true science; and to this man more than to any other single individual--it might almost be said more than to all other individuals--was due this wonderful advance. It is almost superfluous to add that the name of this marvellous chemist was Louis Pasteur.
The studies of fermentation which Pasteur entered upon in 1854 were aimed at the solution of a controversy that had been waging in the scientific world with varying degrees of activity for a quarter of a century. Back in the thirties, in the day of the early enthusiasm over the perfected microscope, there had arisen a new interest in the minute forms of life which Leeuwenhoek and some of the other early workers with the lens had first described, and which now were shown to be of almost universal prevalence. These minute organisms had been studied more or less by a host of observers, but in particular by the Frenchman Cagniard Latour and the German of cell-theory fame, Theodor Schwann. These men, working independently, had reached the conclusion, about 1837, that the micro-organisms play a vastly more important role in the economy of nature than any one previously had supposed. They held, for example, that the minute specks which largely make up the substance of yeast are living vegetable organisms, and that the growth of these organisms is the cause of the important and familiar process of fermentation. They even came to hold, at least tentatively, the opinion that the somewhat similar micro-organisms to be found in all putrefying matter, animal or vegetable, had a causal relation to the process of putrefaction.
This view, particularly as to the nature of putrefaction, was expressed even more outspokenly a little later by the French botanist Turpin.