Volume IV Part 3 (1/2)

By paying constant heed to this matter of the affinities, chemists are able to make diagrammatic pictures of the plan of architecture of any molecule whose composition is known. In the simple molecule of water (H2O), for example, the two hydrogen atoms must have released each other before they could join the oxygen, and the manner of linking must apparently be that represented in the graphic formula H--O--H.

With molecules composed of a large number of atoms, such graphic representation of the scheme of linking is of course increasingly difficult, yet, with the affinities for a guide, it is always possible.

Of course no one supposes that such a formula, written in a single plane, can possibly represent the true architecture of the molecule: it is at best suggestive or diagrammatic rather than pictorial.

Nevertheless, it affords hints as to the structure of the molecule such as the fathers of chemistry would not have thought it possible ever to attain.

PERIODICITY OF ATOMIC WEIGHTS

These utterly novel studies of molecular architecture may seem at first sight to take from the atom much of its former prestige as the all-important personage of the chemical world. Since so much depends upon the mere position of the atoms, it may appear that comparatively little depends upon the nature of the atoms themselves. But such a view is incorrect, for on closer consideration it will appear that at no time has the atom been seen to renounce its peculiar personality. Within certain limits the character of a molecule may be altered by changing the positions of its atoms (just as different buildings may be constructed of the same bricks), but these limits are sharply defined, and it would be as impossible to exceed them as it would be to build a stone building with bricks. From first to last the brick remains a brick, whatever the style of architecture it helps to construct; it never becomes a stone. And just as closely does each atom retain its own peculiar properties, regardless of its surroundings.

Thus, for example, the carbon atom may take part in the formation at one time of a diamond, again of a piece of coal, and yet again of a particle of sugar, of wood fibre, of animal tissue, or of a gas in the atmosphere; but from first to last--from gla.s.s-cutting gem to intangible gas--there is no demonstrable change whatever in any single property of the atom itself. So far as we know, its size, its weight, its capacity for vibration or rotation, and its inherent affinities, remain absolutely unchanged throughout all these varying fortunes of position and a.s.sociation. And the same thing is true of every atom of all of the seventy-odd elementary substances with which the modern chemist is acquainted. Every one appears always to maintain its unique integrity, gaining nothing and losing nothing.

All this being true, it would seem as if the position of the Daltonian atom as a primordial bit of matter, indestructible and non-trans.m.u.table, had been put to the test by the chemistry of our century, and not found wanting. Since those early days of the century when the electric battery performed its miracles and seemingly reached its limitations in the hands of Davy, many new elementary substances have been discovered, but no single element has been displaced from its position as an undecomposable body. Rather have the a.n.a.lyses of the chemist seemed to make it more and more certain that all elementary atoms are in truth what John Herschel called them, ”manufactured articles”--primordial, changeless, indestructible.

And yet, oddly enough, it has chanced that hand in hand with the experiments leading to such a goal have gone other experiments arid speculations of exactly the opposite tenor. In each generation there have been chemists among the leaders of their science who have refused to admit that the so-called elements are really elements at all in any final sense, and who have sought eagerly for proof which might warrant their scepticism. The first bit of evidence tending to support this view was furnished by an English physician, Dr. William Prout, who in 1815 called attention to a curious relation to be observed between the atomic weight of the various elements. Accepting the figures given by the authorities of the time (notably Thomson and Berzelius), it appeared that a strikingly large proportion of the atomic weights were exact multiples of the weight of hydrogen, and that others differed so slightly that errors of observation might explain the discrepancy. Prout felt that it could not be accidental, and he could think of no tenable explanation, unless it be that the atoms of the various alleged elements are made up of different fixed numbers of hydrogen atoms. Could it be that the one true element--the one primal matter--is hydrogen, and that all other forms of matter are but compounds of this original substance?

Prout advanced this startling idea at first tentatively, in an anonymous publication; but afterwards he espoused it openly and urged its tenability. Coming just after Davy's dissociation of some supposed elements, the idea proved alluring, and for a time gained such popularity that chemists were disposed to round out the observed atomic weights of all elements into whole numbers. But presently renewed determinations of the atomic weights seemed to discountenance this practice, and Prout's alleged law fell into disrepute. It was revived, however, about 1840, by Dumas, whose great authority secured it a respectful hearing, and whose careful redetermination of the weight of carbon, making it exactly twelve times that of hydrogen, aided the cause.

Subsequently Stas, the pupil of Dumas, undertook a long series of determinations of atomic weights, with the expectation of confirming the Proutian hypothesis. But his results seemed to disprove the hypothesis, for the atomic weights of many elements differed from whole numbers by more, it was thought, than the limits of error of the experiments. It was noteworthy, however, that the confidence of Dumas was not shaken, though he was led to modify the hypothesis, and, in accordance with previous suggestions of Clark and of Marignac, to recognize as the primordial element, not hydrogen itself, but an atom half the weight, or even one-fourth the weight, of that of hydrogen, of which primordial atom the hydrogen atom itself is compounded. But even in this modified form the hypothesis found great opposition from experimental observers.

In 1864, however, a novel relation between the weights of the elements and their other characteristics was called to the attention of chemists by Professor John A. R. Newlands, of London, who had noticed that if the elements are arranged serially in the numerical order of their atomic weights, there is a curious recurrence of similar properties at intervals of eight elements This so-called ”law of octaves” attracted little immediate attention, but the facts it connotes soon came under the observation of other chemists, notably of Professors Gustav Hinrichs in America, Dmitri Mendeleeff in Russia, and Lothar Meyer in Germany.

Mendeleeff gave the discovery fullest expression, explicating it in 1869, under the t.i.tle of ”the periodic law.”

Though this early exposition of what has since been admitted to be a most important discovery was very fully outlined, the generality of chemists gave it little heed till a decade or so later, when three new elements, gallium, scandium, and germanium, were discovered, which, on being a.n.a.lyzed, were quite unexpectedly found to fit into three gaps which Mendeleeff had left in his periodic scale. In effect the periodic law had enabled Mendeleeff to predicate the existence of the new elements years before they were discovered. Surely a system that leads to such results is no mere vagary. So very soon the periodic law took its place as one of the most important generalizations of chemical science.

This law of periodicity was put forward as an expression of observed relations independent of hypothesis; but of course the theoretical bearings of these facts could not be overlooked. As Professor J. H.

Gladstone has said, it forces upon us ”the conviction that the elements are not separate bodies created without reference to one another, but that they have been originally fas.h.i.+oned, or have been built up, from one another, according to some general plan.” It is but a short step from that proposition to the Proutian hypothesis.

NEW WEAPONS--SPECTROSCOPE AND CAMERA

But the atomic weights are not alone in suggesting the compound nature of the alleged elements. Evidence of a totally different kind has contributed to the same end, from a source that could hardly have been imagined when the Proutian hypothesis, was formulated, through the tradition of a novel weapon to the armamentarium of the chemist--the spectroscope. The perfection of this instrument, in the hands of two German scientists, Gustav Robert Kirchhoff and Robert Wilhelm Bunsen, came about through the investigation, towards the middle of the century, of the meaning of the dark lines which had been observed in the solar spectrum by Fraunhofer as early as 1815, and by Wollaston a decade earlier. It was suspected by Stokes and by Fox Talbot in England, but first brought to demonstration by Kirchhoff and Bunsen, that these lines, which were known to occupy definite positions in the spectrum, are really indicative of particular elementary substances. By means of the spectroscope, which is essentially a magnifying lens attached to a prism of gla.s.s, it is possible to locate the lines with great accuracy, and it was soon shown that here was a new means of chemical a.n.a.lysis of the most exquisite delicacy. It was found, for example, that the spectroscope could detect the presence of a quant.i.ty of sodium so infinitesimal as the one two-hundred-thousandth of a grain. But what was even more important, the spectroscope put no limit upon the distance of location of the substance it tested, provided only that sufficient light came from it. The experiments it recorded might be performed in the sun, or in the most distant stars or nebulae; indeed, one of the earliest feats of the instrument was to wrench from the sun the secret of his chemical const.i.tution.

To render the utility of the spectroscope complete, however, it was necessary to link with it another new chemical agency--namely, photography. This now familiar process is based on the property of light to decompose certain unstable compounds of silver, and thus alter their chemical composition. Davy and Wedgwood barely escaped the discovery of the value of the photographic method early in the nineteenth century.

Their successors quite overlooked it until about 1826, when Louis J. M.

Daguerre, the French chemist, took the matter in hand, and after many years of experimentation brought it to relative perfection in 1839, in which year the famous daguerreotype first brought the matter to popular attention. In the same year Mr. Fox Talbot read a paper on the subject before the Royal Society, and soon afterwards the efforts of Herschel and numerous other natural philosophers contributed to the advancement of the new method.

In 1843 Dr. John W. Draper, the famous English-American chemist and physiologist, showed that by photography the Fraunhofer lines in the solar spectrum might be mapped with absolute accuracy; also proving that the silvered film revealed many lines invisible to the unaided eye. The value of this method of observation was recognized at once, and, as soon as the spectroscope was perfected, the photographic method, in conjunction with its use, became invaluable to the chemist. By this means comparisons of spectra may be made with a degree of accuracy not otherwise obtainable; and, in case of the stars, whole cl.u.s.ters of spectra may be placed on record at a single observation.

As the examination of the sun and stars proceeded, chemists were amazed or delighted, according to their various preconceptions, to witness the proof that many familiar terrestrial elements are to be found in the celestial bodies. But what perhaps surprised them most was to observe the enormous preponderance in the sidereal bodies of the element hydrogen. Not only are there vast quant.i.ties of this element in the sun's atmosphere, but some other suns appeared to show hydrogen lines almost exclusively in their spectra. Presently it appeared that the stars of which this is true are those white stars, such as Sirius, which had been conjectured to be the hottest; whereas stars that are only red-hot, like our sun, show also the vapors of many other elements, including iron and other metals.

In 1878 Professor J. Norman Lockyer, in a paper before the Royal Society, called attention to the possible significance of this series of observations. He urged that the fact of the sun showing fewer elements than are observed here on the cool earth, while stars much hotter than the sun show chiefly one element, and that one hydrogen, the lightest of known elements, seemed to give color to the possibility that our alleged elements are really compounds, which at the temperature of the hottest stars may be decomposed into hydrogen, the latter ”element” itself being also doubtless a compound, which might be resolved under yet more trying conditions.

Here, then, was what might be termed direct experimental evidence for the hypothesis of Prout. Unfortunately, however, it is evidence of a kind which only a few experts are competent to discuss--so very delicate a matter is the spectral a.n.a.lysis of the stars. What is still more unfortunate, the experts do not agree among themselves as to the validity of Professor Lockyer's conclusions. Some, like Professor Crookes, have accepted them with acclaim, hailing Lockyer as ”the Darwin of the inorganic world,” while others have sought a different explanation of the facts he brings forward. As yet it cannot be said that the controversy has been brought to final settlement. Still, it is hardly to be doubted that now, since the periodic law has seemed to join hands with the spectroscope, a belief in the compound nature of the so-called elements is rapidly gaining ground among chemists. More and more general becomes the belief that the Daltonian atom is really a compound radical, and that back of the seeming diversity of the alleged elements is a single form of primordial matter. Indeed, in very recent months, direct experimental evidence for this view has at last come to hand, through the study of radio-active substances. In a later chapter we shall have occasion to inquire how this came about.

IV. ANATOMY AND PHYSIOLOGY IN THE EIGHTEENTH CENTURY

ALBRECHT VON HALLER

An epoch in physiology was made in the eighteenth century by the genius and efforts of Albrecht von Haller (1708-1777), of Berne, who is perhaps as worthy of the t.i.tle ”The Great” as any philosopher who has been so christened by his contemporaries since the time of Hippocrates.