Volume I Part 8 (1/2)
Doubtless this, like most similar good sayings, is apocryphal; but whoever invented it has made the world his debtor.
HEROPHILUS AND ERASISTRATUS
The catholicity of Ptolemy's tastes led him, naturally enough, to cultivate the biological no less than the physical sciences. In particular his influence permitted an epochal advance in the field of medicine. Two anatomists became famous through the investigations they were permitted to make under the patronage of the enlightened ruler.
These earliest of really scientific investigators of the mechanism of the human body were named Herophilus and Erasistratus. These two anatomists gained their knowledge by the dissection of human bodies (theirs are the first records that we have of such practices), and King Ptolemy himself is said to have been present at some of these dissections. They were the first to discover that the nerve-trunks have their origin in the brain and spinal cord, and they are credited also with the discovery that these nerve-trunks are of two different kinds--one to convey motor, and the other sensory impulses. They discovered, described, and named the coverings of the brain. The name of Herophilus is still applied by anatomists, in honor of the discoverer, to one of the sinuses or large ca.n.a.ls that convey the venous blood from the head. Herophilus also noticed and described four cavities or ventricles in the brain, and reached the conclusion that one of these ventricles was the seat of the soul--a belief shared until comparatively recent times by many physiologists. He made also a careful and fairly accurate study of the anatomy of the eye, a greatly improved the old operation for cataract.
With the increased knowledge of anatomy came also corresponding advances in surgery, and many experimental operations are said to have been performed upon condemned criminals who were handed over to the surgeons by the Ptolemies. While many modern writers have attempted to discredit these a.s.sertions, it is not improbable that such operations were performed. In an age when human life was held so cheap, and among a people accustomed to torturing condemned prisoners for comparatively slight offences, it is not unlikely that the surgeons were allowed to inflict perhaps less painful tortures in the cause of science.
Furthermore, we know that condemned criminals were sometimes handed over to the medical profession to be ”operated upon and killed in whatever way they thought best” even as late as the sixteenth century.
Tertullian(1) probably exaggerates, however, when he puts the number of such victims in Alexandria at six hundred.
Had Herophilus and Erasistratus been as happy in their deductions as to the functions of the organs as they were in their knowledge of anatomy, the science of medicine would have been placed upon a very high plane even in their time. Unfortunately, however, they not only drew erroneous inferences as to the functions of the organs, but also disagreed radically as to what functions certain organs performed, and how diseases should be treated, even when agreeing perfectly on the subject of anatomy itself. Their contribution to the knowledge of the scientific treatment of diseases holds no such place, therefore, as their anatomical investigations.
Half a century after the time of Herophilus there appeared a Greek physician, Heraclides, whose reputation in the use of drugs far surpa.s.ses that of the anatomists of the Alexandrian school. His reputation has been handed down through the centuries as that of a physician, rather than a surgeon, although in his own time he was considered one of the great surgeons of the period. Heraclides belonged to the ”Empiric” school, which rejected anatomy as useless, depending entirely on the use of drugs. He is thought to have been the first physician to point out the value of opium in certain painful diseases.
His prescription of this drug for certain cases of ”sleeplessness, spasm, cholera, and colic,” shows that his use of it was not unlike that of the modern physician in certain cases; and his treatment of fevers, by keeping the patient's head cool and facilitating the secretions of the body, is still recognized as ”good practice.” He advocated a free use of liquids in quenching the fever patient's thirst--a recognized therapeutic measure to-day, but one that was widely condemned a century ago.
ARCHIMEDES OF SYRACUSE AND THE FOUNDATION OF MECHANICS
We do not know just when Euclid died, but as he was at the height of his fame in the time of Ptolemy I., whose reign ended in the year 285 B.C., it is hardly probable that he was still living when a young man named Archimedes came to Alexandria to study. Archimedes was born in the Greek colony of Syracuse, on the island of Sicily, in the year 287 B.C. When he visited Alexandria he probably found Apollonius of Perga, the pupil of Euclid, at the head of the mathematical school there. Just how long Archimedes remained at Alexandria is not known. When he had satisfied his curiosity or completed his studies, he returned to Syracuse and spent his life there, chiefly under the patronage of King Hiero, who seems fully to have appreciated his abilities.
Archimedes was primarily a mathematician. Left to his own devices, he would probably have devoted his entire time to the study of geometrical problems. But King Hiero had discovered that his protege had wonderful mechanical ingenuity, and he made good use of this discovery. Under stress of the king's urgings, the philosopher was led to invent a great variety of mechanical contrivances, some of them most curious ones.
Antiquity credited him with the invention of more than forty machines, and it is these, rather than his purely mathematical discoveries, that gave his name popular vogue both among his contemporaries and with posterity. Every one has heard of the screw of Archimedes, through which the paradoxical effect was produced of making water seem to flow up hill. The best idea of this curious mechanism is obtained if one will take in hand an ordinary corkscrew, and imagine this instrument to be changed into a hollow tube, retaining precisely the same shape but increased to some feet in length and to a proportionate diameter. If one will hold the corkscrew in a slanting direction and turn it slowly to the right, supposing that the point dips up a portion of water each time it revolves, one can in imagination follow the flow of that portion of water from spiral to spiral, the water always running downward, of course, yet paradoxically being lifted higher and higher towards the base of the corkscrew, until finally it pours out (in the actual Archimedes' tube) at the top. There is another form of the screw in which a revolving spiral blade operates within a cylinder, but the principle is precisely the same. With either form water may be lifted, by the mere turning of the screw, to any desired height. The ingenious mechanism excited the wonder of the contemporaries of Archimedes, as well it might. More efficient devices have superseded it in modern times, but it still excites the admiration of all who examine it, and its effects seem as paradoxical as ever.
Some other of the mechanisms of Archimedes have been made known to successive generations of readers through the pages of Polybius and Plutarch. These are the devices through which Archimedes aided King Hiero to ward off the attacks of the Roman general Marcellus, who in the course of the second Punic war laid siege to Syracuse.
Plutarch, in his life of Marcellus, describes the Roman's attack and Archimedes' defence in much detail. Incidentally he tells us also how Archimedes came to make the devices that rendered the siege so famous:
”Marcellus himself, with threescore galleys of five rowers at every bank, well armed and full of all sorts of artillery and fireworks, did a.s.sault by sea, and rowed hard to the wall, having made a great engine and device of battery, upon eight galleys chained together, to batter the wall: trusting in the great mult.i.tude of his engines of battery, and to all such other necessary provision as he had for wars, as also in his own reputation. But Archimedes made light account of all his devices, as indeed they were nothing comparable to the engines himself had invented.
This inventive art to frame instruments and engines (which are called mechanical, or organical, so highly commended and esteemed of all sorts of people) was first set forth by Architas, and by Eudoxus: partly to beautify a little the science of geometry by this fineness, and partly to prove and confirm by material examples and sensible instruments, certain geometrical conclusions, where of a man cannot find out the conceivable demonstrations by enforced reasons and proofs. As that conclusion which instructeth one to search out two lines mean proportional, which cannot be proved by reason demonstrative, and yet notwithstanding is a principle and an accepted ground for many things which are contained in the art of portraiture. Both of them have fas.h.i.+oned it to the workmans.h.i.+p of certain instruments, called mesolabes or mesographs, which serve to find these mean lines proportional, by drawing certain curve lines, and overthwart and oblique sections. But after that Plato was offended with them, and maintained against them, that they did utterly corrupt and disgrace, the worthiness and excellence of geometry, making it to descend from things not comprehensible and without body, unto things sensible and material, and to bring it to a palpable substance, where the vile and base handiwork of man is to be employed: since that time, I say, handicraft, or the art of engines, came to be separated from geometry, and being long time despised by the philosophers, it came to be one of the warlike arts.
”But Archimedes having told King Hiero, his kinsman and friend, that it was possible to remove as great a weight as he would, with as little strength as he listed to put to it: and boasting himself thus (as they report of him) and trusting to the force of his reasons, wherewith he proved this conclusion, that if there were another globe of earth, he was able to remove this of ours, and pa.s.s it over to the other: King Hiero wondering to hear him, required him to put his device in execution, and to make him see by experience, some great or heavy weight removed, by little force. So Archimedes caught hold with a book of one of the greatest carects, or hulks of the king (that to draw it to the sh.o.r.e out of the water required a marvellous number of people to go about it, and was hardly to be done so) and put a great number of men more into her, than her ordinary burden: and he himself sitting alone at his ease far off, without any straining at all, drawing the end of an engine with many wheels and pulleys, fair and softly with his hand, made it come as gently and smoothly to him, as it had floated in the sea. The king wondering to see the sight, and knowing by proof the greatness of his art; be prayed him to make him some engines, both to a.s.sault and defend, in all manner of sieges and a.s.saults. So Archimedes made him many engines, but King Hiero never occupied any of them, because he reigned the most part of his time in peace without any wars. But this provision and munition of engines, served the Syracusan's turn marvellously at that time: and not only the provision of the engines ready made, but also the engineer and work-master himself, that had invented them.
”Now the Syracusans, seeing themselves a.s.saulted by the Romans, both by sea and by land, were marvellously perplexed, and could not tell what to say, they were so afraid: imagining it was impossible for them to withstand so great an army. But when Archimedes fell to handling his engines, and to set them at liberty, there flew in the air infinite kinds of shot, and marvellous great stones, with an incredible noise and force on the sudden, upon the footmen that came to a.s.sault the city by land, bearing down, and tearing in pieces all those which came against them, or in what place soever they lighted, no earthly body being able to resist the violence of so heavy a weight: so that all their ranks were marvellously disordered. And as for the galleys that gave a.s.sault by sea, some were sunk with long pieces of timber like unto the yards of s.h.i.+ps, whereto they fasten their sails, which were suddenly blown over the walls with force of their engines into their galleys, and so sunk them by their over great weight.”
Polybius describes what was perhaps the most important of these contrivances, which was, he tells us, ”a band of iron, hanging by a chain from the beak of a machine, which was used in the following manner. The person who, like a pilot, guided the beak, having let fall the hand, and catched hold of the prow of any vessel, drew down the opposite end of the machine that was on the inside of the walls. And when the vessel was thus raised erect upon its stem, the machine itself was held immovable; but, the chain being suddenly loosened from the beak by the means of pulleys, some of the vessels were thrown upon their sides, others turned with the bottom upwards; and the greatest part, as the prows were plunged from a considerable height into the sea, were filled with water, and all that were on board thrown into tumult and disorder.
”Marcellus was in no small degree embarra.s.sed,” Polybius continues, ”when he found himself encountered in every attempt by such resistance.
He perceived that all his efforts were defeated with loss; and were even derided by the enemy. But, amidst all the anxiety that he suffered, he could not help jesting upon the inventions of Archimedes. This man, said he, employs our s.h.i.+ps as buckets to draw water: and boxing about our sackbuts, as if they were unworthy to be a.s.sociated with him, drives them from his company with disgrace. Such was the success of the siege on the side of the sea.”
Subsequently, however, Marcellus took the city by strategy, and Archimedes was killed, contrary, it is said, to the express orders of Marcellus. ”Syracuse being taken,” says Plutarch, ”nothing grieved Marcellus more than the loss of Archimedes. Who, being in his study when the city was taken, busily seeking out by himself the demonstration of some geometrical proposition which he had drawn in figure, and so earnestly occupied therein, as he neither saw nor heard any noise of enemies that ran up and down the city, and much less knew it was taken: he wondered when he saw a soldier by him, that bade him go with him to Marcellus. Notwithstanding, he spake to the soldier, and bade him tarry until he had done his conclusion, and brought it to demonstration: but the soldier being angry with his answer, drew out his sword and killed him. Others say, that the Roman soldier when he came, offered the sword's point to him, to kill him: and that Archimedes when he saw him, prayed him to hold his hand a little, that he might not leave the matter he looked for imperfect, without demonstration. But the soldier making no reckoning of his speculation, killed him presently. It is reported a third way also, saying that certain soldiers met him in the streets going to Marcellus, carrying certain mathematical instruments in a little pretty coffer, as dials for the sun, spheres, and angles, wherewith they measure the greatness of the body of the sun by view: and they supposing he had carried some gold or silver, or other precious jewels in that little coffer, slew him for it. But it is most certain that Marcellus was marvellously sorry for his death, and ever after hated the villain that slew him, as a cursed and execrable person: and how he had made also marvellous much afterwards of Archimedes' kinsmen for his sake.”
We are further indebted to Plutarch for a summary of the character and influence of Archimedes, and for an interesting suggestion as to the estimate which the great philosopher put upon the relative importance of his own discoveries. ”Notwithstanding Archimedes had such a great mind, and was so profoundly learned, having hidden in him the only treasure and secrets of geometrical inventions: as he would never set forth any book how to make all these warlike engines, which won him at that time the fame and glory, not of man's knowledge, but rather of divine wisdom.
But he esteeming all kind of handicraft and invention to make engines, and generally all manner of sciences bringing common commodity by the use of them, to be but vile, beggarly, and mercenary dross: employed his wit and study only to write things, the beauty and subtlety whereof were not mingled anything at all with necessity. For all that he hath written, are geometrical propositions, which are without comparison of any other writings whatsoever: because the subject where of they treat, doth appear by demonstration, the maker gives them the grace and the greatness, and the demonstration proving it so exquisitely, with wonderful reason and facility, as it is not repugnable. For in all geometry are not to be found more profound and difficult matters written, in more plain and simple terms, and by more easy principles, than those which he hath invented. Now some do impute this, to the sharpness of his wit and understanding, which was a natural gift in him: others do refer it to the extreme pains he took, which made these things come so easily from him, that they seemed as if they had been no trouble to him at all. For no man living of himself can devise the demonstration of his propositions, what pains soever he take to seek it: and yet straight so soon as he cometh to declare and open it, every man then imagineth with himself he could have found it out well enough, he can then so plainly make demonstration of the thing he meaneth to show. And therefore that methinks is likely to be true, which they write of him: that he was so ravished and drunk with the sweet enticements of this siren, which as it were lay continually with him, as he forgot his meat and drink, and was careless otherwise of himself, that oftentimes his servants got him against his will to the baths to wash and anoint him: and yet being there, he would ever be drawing out of the geometrical figures, even in the very imbers of the chimney. And while they were anointing of him with oils and sweet savours, with his finger he did draw lines upon his naked body: so far was he taken from himself, and brought into an ecstasy or trance, with the delight he had in the study of geometry, and truly ravished with the love of the Muses. But amongst many notable things he devised, it appeareth, that he most esteemed the demonstration of the proportion between the cylinder (to wit, the round column) and the sphere or globe contained in the same: for he prayed his kinsmen and friends, that after his death they would put a cylinder upon his tomb, containing a ma.s.sy sphere, with an inscription of the proportion, whereof the continent exceedeth the thing contained.”(2)
It should be observed that neither Polybius nor Plutarch mentions the use of burning-gla.s.ses in connection with the siege of Syracuse, nor indeed are these referred to by any other ancient writer of authority.
Nevertheless, a story gained credence down to a late day to the effect that Archimedes had set fire to the fleet of the enemy with the aid of concave mirrors. An experiment was made by Sir Isaac Newton to show the possibility of a phenomenon so well in accord with the genius of Archimedes, but the silence of all the early authorities makes it more than doubtful whether any such expedient was really adopted.
It will be observed that the chief principle involved in all these mechanisms was a capacity to transmit great power through levers and pulleys, and this brings us to the most important field of the Syracusan philosopher's activity. It was as a student of the lever and the pulley that Archimedes was led to some of his greatest mechanical discoveries.
He is even credited with being the discoverer of the compound pulley.
More likely he was its developer only, since the principle of the pulley was known to the old Babylonians, as their sculptures testify. But there is no reason to doubt the general outlines of the story that Archimedes astounded King Hiero by proving that, with the aid of multiple pulleys, the strength of one man could suffice to drag the largest s.h.i.+p from its moorings.