Part 5 (2/2)

Coal Raphael Meldola 131700K 2022-07-22

From these beginnings the development of the azo-dyes has been steadily carried on to the present time--year by year new diazotisable amido-compounds or new sulpho-acids of the naphthols and naphthylamines are being discovered, and this branch of the colour industry has already a.s.sumed colossal dimensions. An important departure was made in 1884 by Bottiger, who introduced the first secondary azo-colours derived from benzidine. As already explained in connection with salicylic acid, this base and its h.o.m.ologue tolidine form tetrazo-salts, which combine with phenols and amines or their sulpho-acids. One of the first colouring-matters of this group was obtained by combining diazotised benzidine with the sulpho-acid of alpha-naphthylamine (naphthionic acid), and was introduced under the name of ”Congo red.” Then came the discovery (Pfaff, 1885), that the tetrazo-salts of benzidine and tolidine combine with phenols, amines, &c., in two stages, one of the diazo-groups first combining with one-half of the whole quant.i.ty of phenol to form an intermediate compound, which then combines with the other half of the phenol to form the secondary azo-dye. In the hands of the ”Actiengesellschaft fur Anilinfabrikation” of Berlin this discovery has been utilized for the production of a number of such azo-colours containing two distinct phenols, or amines, or sulpho-acids. Tolidine has been found to give better colouring-matters in most cases than benzidine, and it is scarcely necessary to point out that an increased demand for the nitrotoluene from which this base is made is the necessary consequence of this discovery.

It is impossible to attempt to specify by name any of these recent benzidine and tolidine dyes. Their introduction has been the means of finding new uses for the naphthylamines and naphthols and their sulpho-acids, and has thus contributed largely to the utilization of naphthalene. An impetus has been given to the investigation of these sulpho-acids, and chemical science has profited largely thereby. The process by which beta-naphthylamine is prepared from beta-naphthol, already referred to, viz. by heating with ammonia under pressure, has been extended to the sulpho-acids of beta-naphthol, and by this means new beta-naphthylamine sulpho-acids have been prepared, and figure largely in the production of these secondary azo-colours. The latter, as previously stated, possess the most valuable property of dyeing cotton fibre directly, and by their means the art of cotton dyeing has been greatly simplified. The shades given by these colours vary from yellow through orange to bright scarlet, violet, or purple.

In addition to benzidine and tolidine, other diazotisable amido-compounds have of late years been pressed into the service of the colour-manufacturer. The derivative of stilbene, already mentioned as being prepared from a sulpho-acid of one of the nitrotoluenes, forms tetrazo-salts, which can be combined with similar or dissimilar phenols, amines, or sulpho-acids, as in the case of benzidine and tolidine.

Various shades of red and purple are thus obtained from the diazotised compound, when the latter is combined with the naphthylamines, naphthols, or their sulpho-acids. These, again, are all cotton dyes. The nitro-derivatives of the ethers of phenol and cresol, when reduced in the same way that nitrobenzene and nitrotoluene are reduced to azobenzene and azotoluene, also furnish azo-compounds which, on further reduction, give bases a.n.a.logous to benzidine and tolidine. Secondary azo-colours derived from these bases and the usual naphthalene derivatives are also manufactured. It is among the secondary azo-dyes that we meet with the first direct dyeing blacks, the importance of which will be realized when it is remembered that the ordinary aniline-black is not adapted for wool dyeing. The azo-blacks are obtained by combining diazotised sulpho-acids of amidoazo-compounds of the benzene or naphthalene series with naphthol sulpho-acids or other naphthalene derivatives.

One other series of azo-compounds must be briefly referred to. It has long been known that aniline and toluidine when heated with sulphur evolve sulphuretted hydrogen and give rise to thio-bases, that is, aniline or toluidine in which the hydrogen is partly replaced by sulphur. One of the toluidines treated in this way is transformed into a thiotoluidine which, when diazotised and combined with one of the disulpho-acids of beta-naphthol, forms a red azo-dye, introduced by Dahl & Co. in 1885 as ”thiorubin.” By modifying the conditions of reaction between the sulphur and the base, it was found in 1887 by Arthur Green, that a complicated thio-derivative of toluidine could be produced which possessed very remarkable properties. The sulpho-acid of the thio-base is a yellow dye, which was named by its discoverer ”primuline.” Not only is primuline a dye, but it contains an amido-group which can be diazotised. If therefore the fabric dyed with primuline is pa.s.sed through a nitrite bath, a diazo-salt is formed in the fibre, and on immersing the latter in a second bath containing naphthol or other phenol or an amine, an azo-dye is precipitated in the fibre. By this means there are produced valuable ”ingrain colours” of various shades of red, orange, purple, &c.

So much for the azo-dyes, one of the most prolific fields of industrial enterprise connected with coal-tar technology. From the introduction of aniline yellow in 1863 to the present time, about 150 distinct compounds of this group have been given to the tinctorial industry. Of these over thirty are cotton dyes containing two azo-groups. Sombre shades, rivalling logwood black, bright yellows, orange-reds, browns, violets, and brilliant scarlets equalling cochineal, have been evolved from the refuse of the gas-works. The artificial colouring-matters have in this last case once again threatened a natural product, and with greater success than the indigo synthesis, for the introduction of the azo-scarlets has caused a marked decline in the cochineal culture.

In addition to the azo-colours, there are certain other products which claim naphthalene as a raw material. In 1879 it was found that one of the sulpho-acids of beta-naphthol when treated with nitrous acid readily gave a nitroso-sulpho-acid. A salt of this last acid, containing sodium and iron as metallic bases, was introduced in 1884, under the name of ”naphthol green.” It is used both as a dye for wool and as a pigment. It may be mentioned here that other nitroso-derivatives of phenols, such as those of resorcinol and the naphthols, under the name of ”gambines,” are largely used for dyeing purposes, owing to the facility with which they combine with metallic mordants to form coloured salts in the fibre. In this same year, 1879, it was found that by heating nitrosodimethylaniline with beta-naphthol in an appropriate solvent, a violet colouring-matter was formed. This is now manufactured under the name of ”new blue,” or other designations, and is largely used for producing an indigo-blue shade on cotton prepared with a suitable mordant. The discovery of this colouring-matter gave an impetus to further discoveries in the same direction. It was found that nitrosodimethylaniline reacted in a similar way with other phenolic or with amidic compounds. In 1881 Kochlin introduced an a.n.a.logous dye-stuff prepared by the action of the same nitroso-compound on gallic acid. Gallocyanin, as it is called, imparts a violet blue shade to mordanted cotton. Other colouring-matters of the same group are in use; some of them, like ”new blue,” being derivatives of naphthalene. These compounds all belong to a series of which the parent substance is constructed on a type similar to azine; it contains a nitrogen and oxygen atom linking together the hydrocarbon residues, and is therefore known as ”oxazine.” The researches of Nietzki in 1888 first established the true const.i.tution of the oxazines.

Closely related to this group is a colouring-matter introduced by Kochlin and Witt in 1881 under the name of ”indophenol.” It is prepared in the same way as the azines of the ”neutral red” group; viz. by the action of nitrosodimethylaniline on alpha-naphthol, or by oxidizing amidodimethylaniline in the presence of alpha-naphthol. Indophenol belongs to that group of blue compounds formed as intermediate products in the manufacture of azines, as mentioned in connection with ”neutral red.” But while these intermediate blues resulting from the oxidation of a diamine in the presence of another amine are unstable, and pa.s.s readily into red azines, indophenol is stable, and can be used for dyeing and printing in the same way as indigo. The shades which it produces are very similar to this last dye, but for certain practical reasons it has not been able to compete with the natural dye-stuff.

The story of naphthalene is summarized in the schemes on pp. 164, 165.

Light Oil:

Benzene->Disulpho-acid-->Resorcinol.[6]

-->Nitrobenzene} } Sulphanilic acid.[7]

} Aniline} Amidoazobenzene and sulpho-acid.[7]

} } Nitrosodimethylaniline[8] and } } amidodimethylaniline.[8]

} Sulpho-acid-->Amidosulpho-acid-->Amidophenol } and ethers.[6]

} Azobenzene-->Benzidine.[7]

}Toluidines[7] Sulpho-acids.[7]

} Amidoazotoluene[7]

} and sulpho-acid.[7]

} Thiotoluidine and primuline.[7]

Toluene-->Nitrotoluenes} Azotoluene-->Tolidine.[7]

} Sulpho-acid and Stilbene-derivative.[7]

} Sulpho-acids.[7]

Xylene->Nitroxylenes->Xylidines[7]} Amidoazoxylene[7] and sulpho-acid.[7]

} c.u.midine.[7]

Carbolic Oil:

Phenol-->Nitrophenol and ethers } Azophenol ethers-->Diamidic bases[9]

} a.n.a.logous to benzidine.

} Amidophenol[9] and ethers.[9]

Cresols-->Nitrocresols and ethers-->Amidocresols[9] and ethers.[9]

<script>