Part 21 (1/2)
But really we are more concerned here with the machines than with the men, so let us get back to our subject.
The aeroplane consists of one or more ”planes” or surfaces which, on being held at a certain slant and then pushed forward rise or remain supported in the air. Therefore the plane or planes need to be supplemented by first a tail and horizontal rudder to hold them at the correct slant, and an engine and propeller to drive them forward.
It is not necessary, here, to go over the history of the aeroplane, as that has been told so often. It is not of much interest, moreover, except to those who are particularly concerned with small details of construction, for in a general way the machine of to-day is very little different from one pictured by Sir George Cayley a hundred years ago. It is only the perfecting of the details which has transformed a dream into a very real thing.
So we will look only at the construction of the aeroplane in a general way, to do which we must first consider why it flies at all. It is due to the well-established law that action is always accompanied by a reaction equally strong and in the opposite direction. When a gun is fired the explosion not only drives the sh.e.l.l forward but equally drives the gun itself backward. The backward energy of the recoil is precisely equal to the forward energy of the sh.e.l.l. The two are equal but in opposite directions. In like manner a rocket ascends because the hot gases from the paper cylinder blow forcibly downwards, thereby producing an equal reaction upwards.
Now the plane of a flying machine is held with its forward edge a little higher than its rear edge, so that as it is pushed along it tends to catch the air and throw it downwards. Hence the reaction tends to lift the plane upwards. When the machine starts the reaction is not sufficient to overcome gravity, which is trying to hold the machine down upon the ground, but as the speed increases and the air is thrust down with more and more violence the point is ultimately reached when the reaction is able to overcome gravity and the machine ascends.
When a sufficient height is reached, the pilot alters the position of his horizontal rudder or ”elevator” so as to make the position of the plane more flat, with the result that it throws the air downwards to a less extent, and the reaction is thereby reduced until it is only just sufficient to keep the machine at the same height. To descend, the position of the plane is made still flatter, the reaction is reduced still more and gravity has its way once again, bringing the machine to earth.
In other words, the machine acts under the influence of two forces: the downward pull of gravity and the upward reaction due to the action of the machine in throwing the air downward. The former never varies, the latter can be varied by the pilot at will: he can increase it by increasing the speed or by increasing the tilt of his plane or planes: he can reduce it by diminis.h.i.+ng the speed or the tilt. Since generally speaking the speed of his engine will remain constant, he rises, remains at the same height or falls, at will, by the simple manipulation of the elevator through which he can change the tilt or inclination.
Most machines have a fixed tail as well as a horizontal rudder or elevator, the same being so set that it tends to keep the plane in a certain normal inclination, the elevator being called in to increase that or diminish it as may be required.
In addition to the elevator there is also another rudder of the ordinary kind, such as every s.h.i.+p and boat has, for guiding the machine to right or left. The elevator steers up and down, the rudder steers to either hand.
Provision is also made for balancing the machine. This is sometimes in the form of two small planes hinged to the main plane, one at either end, connected together and to a controlling lever by wires, so that by their use the pilot can steer the right-hand side of his machine upwards and the left-hand downward, or vice versa, if through any cause he finds a tendency to capsize.
In some machines the same effect is produced not by separate planes but by pulling the main plane itself somewhat out of shape, but precisely the same principle is involved.
The planes are usually made with a slight curve in them, so that they may the better catch the air and ”scoop” it downwards, so to speak. They usually consist of fabric specially made for the purpose, stretched upon a light wooden framework. The whole framework is usually of wood with metal fittings frequently made of aluminium for the sake of lightness.
The engines have been mentioned in another chapter. The propeller which is almost invariably fixed directly upon the shaft of the engine has two blades only and not three as is usual with those of s.h.i.+ps. Precisely why this should be so is not clear, but experience shows that two-bladed propellers are preferable for this work. They are made of wood, several layers being glued together under pressure, the resulting log being then carved out to the required shape. This makes a stronger thing than it would be if cut out of a single piece of wood.
All parts, engine, elevator, rudder and balancing arrangement, are controlled by very simple means from the pilot's seat.
In monoplanes there is but one main plane, resembling a pair of bird's wings. Or if we care to look upon it as two planes, one each side of the ”body,” then we must call it a pair. Since the name ”mono” indicates one it is best to think of it as one plane although it may be in two parts.
The biplane has, as its name implies, two planes, but in that case there can be no doubt, since they are placed one above the other. Machines have been made with three planes and even with as many as five, but monoplanes and biplanes appear to hold the field.
It is not possible for an aeroplane to be in any sense armoured for protection against bullets: for defence the pilot has to depend upon his own cunning man[oe]uvres combined with the fast speed at which he can move. For offensive purposes he usually has a machine gun mounted right in front of him with which he can pour a stream of bullets into an opponent or even, by flying low, he can attack a body of infantry. It is recorded that one German prisoner during the war, speaking of the daring of the British pilots in thus attacking men on foot, exclaimed, ”They will pull the caps off our heads next.”
Some of the aeroplanes have their propeller behind the pilot and some have it in front. The latter, to distinguish them, are called ”Tractor”
machines, since in their case the propeller pulls them along. Now it is easy to see that a difficulty arises in such cases through the best position for the gun being such that it throws its bullets right on to the propeller. But that has been overcome in a most simple yet ingenious way. The gun is itself operated by the engine with the result that a bullet can only be shot forth during those intervals when neither blade of the propeller is in the way. The propeller is moving so fast that it cannot be seen and the bullets are flying out in a continuous rattle, yet every bullet pa.s.ses between the blades and not one ever touches.
It is easy to see that when an aeroplane is manned by a single man, as is often the case, he must have his hands very full indeed, what with the machine itself and the gun as well. In fact, he often has to leave the machine for a short time to look after itself while he busies himself with the gun.
Now there we see a sign of the wonderful work which has been done in the course of but a few years in the perfecting of the aeroplane, the result of a series of improvements in detail which make but a dreary story if related but which make all the difference between the risky, uncertain machine of a few years ago and the safe, reliable machine of to-day.
Modern machines are inherently stable. The older ones had the elements of stability in them but they were so crudely proportioned that these inherent qualities did not have a chance to come into play.
If one drops a flat card edgewise from a height it seems as if it ought to fall straight down to the ground. Yet we all know from experience that it seldom does anything of the kind. Instead, it a.s.sumes a position somewhere near horizontal and then descends in a series of swoops from side to side. There we see the principle at work which, in a well-designed aeroplane, causes inherent stability. The explanation is as follows.
The aeroplane is sustained in the air through the upward pressure of the air resisting the downward pull of gravity. That has been fully explained already. Now gravity, as we all know, acts upon every part of a body whether it be an aeroplane or anything else. But for practical purposes, we may regard its action as concentrated at one particular point in that body, called the ”centre of gravity.” Likewise, the upward pressure of the air acts upon the whole of the under surface of the plane or planes, yet we may regard it as concentrated at a certain point called the ”centre of pressure.” Further, we all know from experience that a pendulum or other suspended body is only still when its centre of gravity is exactly under the point of suspension. If we move it to either side it will swing back again.
In just the same way, the only position in which an aeroplane will remain steady is that in which the centre of gravity is exactly under the point of suspension or, in other words, the centre of pressure. For the centre of pressure in the aeroplane is precisely similar to the point of suspension of a pendulum.
Let us, then, picture to ourselves an aeroplane flying along on a horizontal course with this happy state of things prevailing. Something we will suppose occurs to upset it with the result that it begins to dive downwards. It is then in the position of sliding downhill and instantly its speed increases in consequence. That increase of speed causes the air to press a little more strongly than it did before upon the front edge of the planes. In other words, the centre of pressure s.h.i.+fts forward a little, with the result that the centre of gravity is then a little to the rear of the centre of pressure.