Part 1 (1/2)
The Romance of War Inventions.
by Thomas W. Corbin.
CHAPTER I
HOW PEACEFUL ARTS HELP IN WAR
In the olden times warfare was supported by a single trade, that of the armourer. Nowadays the whole resources of the greatest manufacturing nations scarcely suffice to supply the needs of their armies. So much is this the case that no nation can possibly hope to become powerful in a military or naval sense unless they are either a great manufacturing community or can rely upon the support of some great manufacturing ally or neutral.
It is most astonis.h.i.+ng to find how closely some of the most innocent and harmless of the commodities of peace are related to the death-dealing devices of war. Of these no two examples could be more striking than the common salt with which we season our food and the soap with which we wash. Yet the manufacture of soap furnishes the material for the most furious of explosives and the chief agent in its manufacture is the common salt of the table.
Common salt is a combination of the metal sodium and the gas chlorine.
There are many places, of which Ches.h.i.+re is a notable example, where vast quant.i.ties of this salt lie buried in the earth.
Fortunately it is very easily dissolved in water so that if wells be sunk in a salt district the water pumped from them will have much salt in solution in it. This is how the underground deposits are tapped. It is not necessary for men to go down as they do after coal, for the water excavates the salt and brings it to the surface.
To obtain the solid salt from the salt water, or brine as it is called, it is only necessary to heat the liquid, when the water pa.s.ses away as steam leaving the salt behind.
Important though this salt is in connection with our food, it is perhaps still more important as the source from which is derived chlorine and caustic soda. How this is done can best be explained by means of a simple experiment which my readers can try in imagination with me or, better still, perform for themselves.
Take a tumbler and fill it with water with a little salt dissolved in it. Next obtain two short pieces of wire and two pieces of pencil lead, which with a pocket lamp battery will complete the apparatus. Connect one piece of wire to each terminal of the battery and twist the other end of it round a piece of pencil lead. Place these so that the ends of the leads dip into the salt water. It is important to keep the wires out of the solution, the leads alone dipping into the liquid, and the two leads should be an inch or so apart.
In a few moments you will observe that tiny bubbles are collecting upon the leads and these joining together into larger bubbles will soon detach themselves and float up to the surface. Those which arise from one of the leads will be formed of the gas chlorine and the others of hydrogen.
It will be interesting just to enumerate the names of the different parts of this apparatus. First let me say that the process by which these gases are thus obtained is called electrolysis: the liquid is the electrolyte: the two pieces of pencil lead are the electrodes. That electrode by which the current enters the electrolyte is called the an-ode, while the other is the cath-ode. In other words, the current traverses them in alphabetical order.
Now it is familiar to everyone that all matter is supposed to consist of tiny particles called Molecules. These are far too tiny for anyone to see even with the finest microscope, so we do not know for certain that they exist: we a.s.sume that they do, however, because the idea seems to fit in with a large number of facts which we can observe and it enables us to talk intelligibly about them. We may, accordingly, speak as if we knew for a certainty that molecules really exist.
Now when we dissolve salt in water it seems as if each molecule splits up into two things which we then call ”ions.” Salt is not peculiar in this respect, for many other substances do the same when dissolved in water. All such substances, since they can be ”ionized,” are called ”ionogens.”
Now the peculiarity about ions is that they are always strongly electrified or charged with electricity.
At this stage we must make a little excursion into the realm of electricity. You probably know that if a rod of gla.s.s be rubbed with a silk handkerchief it becomes able to attract little sc.r.a.ps of paper.
That is because the rubbing causes it to become charged with electricity. In like manner a piece of resin if rubbed will become charged and will also attract little pieces of paper. A piece of electrified resin and an electrified gla.s.s rod will, moreover, attract each other, but two pieces of resin or two pieces of gla.s.s, if electrified, will repel each other. This leads us to believe that there are two kinds of electrification or two kinds of electrical charge. At first these two kinds were spoken of as vitreous or gla.s.s electricity and resinous electricity, but after a while the idea arose that there was really one kind of electricity and that everything possessed a certain amount of it, the electrified gla.s.s having a little too much of it and the electrified resin a shade too little of it. From this came the idea of calling the charge on the gla.s.s a ”positive” charge and that on the resin a ”negative” charge. Recent investigations seem to show that we have got those two terms the wrong way round, but to avoid confusion we still use them in the old way.
It will be sufficient for our purpose, therefore, if we a.s.sume that every molecule of matter has a certain normal amount of electricity a.s.sociated with it and that under those conditions the presence of the electricity is not in any way noticeable. When a molecule becomes ionized, however, one ion always seems to run off with more than its fair share of the electricity, the result being that one is electrified positively, like rubbed gla.s.s, while the other is negatively charged, like rubbed resin.
Thus, when the common salt is dissolved in water, two lots of ions are formed, one lot positively charged and the other lot negatively. Each molecule of salt consists of two atoms, one of sodium and one of chlorine: consequently, one ion is a chlorine atom and the other is a sodium atom, the latter being positive and the former negative.
Now the electrodes are also charged by the action of the battery. That connected to the positive pole of the battery becomes positively charged and the other negatively. The anode, therefore, is positive and the cathode negative.
It has been pointed out that two similarly charged bodies, such as two pieces of gla.s.s or two pieces of resin, repel each other, while either of these attracts one of the other sort. Hence we arrive at a rule that similarly charged bodies repel each other, while dissimilarly charged bodies attract each other.
Acting upon this rule, therefore, the anode starts drawing to itself all the negative ions, in this case the atoms of chlorine, while the cathode gathers together the positive ions, the atoms of sodium. Thus the action of the battery maintains a sorting out process by which the sodium is gathered together around one of the electrodes and the chlorine round the other. Those ions, by the way, which travel towards the _an_-ode are called _an_-ions, while those which go to the cath-ode are termed cat-ions.
Thus far, I think, you will have followed me: the chlorine is gathered to one place and the sodium to the other. The former creates bubbles and floats up to the surface and escapes. But where, you will ask, does the hydrogen come from, which we found, in the experiment, was bubbling up round the cathode. Moreover, what becomes of the sodium?