Part 7 (1/2)

But the principle has not borne the fruit at first expected. There is little doubt that it might be applied to quite a number of human diseases if a serious attempt should be made. But several objections arise against its wide application. In the first place, the inoculation thus necessary is really a serious matter. Even vaccination, as is well known, sometimes, through faulty methods, results fatally, and it is a very serious thing to experiment upon human beings with anything so powerful for ill as pathogenic bacteria. The seriousness of the disease smallpox, its extraordinary contagiousness, and the comparatively mild results of vaccination, have made us willing to undergo vaccination at times of epidemics to avoid the somewhat great probability of taking the disease. But mankind is unwilling to undergo such an operation, even though mild, for the purpose of avoiding other less severe diseases, or diseases which are less likely to be taken. We are unwilling to be inoculated against mild diseases, or against the more severe ones which are uncommon. For instance, a method has been devised for rendering animals immune against lockjaw, which would probably apply equally well to man. But mankind in general will never adopt it, since the danger from lockjaw is so small. Inoculation must then be reserved for diseases which are so severe and so common, or which occur in periodical epidemics of so great severity, as to make people in general willing to submit to inoculation as a protection. A further objection arises from the fact that the immunity acquired is not necessarily lasting. The cattle inoculated against anthrax retain their protective powers for only a few months. How long similar immunity might be retained in other cases we can not say, but plainly this fact would effectually prevent this method of protecting mankind from being used except in special cases. It is out of the question to think of constant and repeated inoculations against various diseases.

As a result, the principle of inoculation as an aid in preventive medicine has not proved of very much value. The only other human disease in which it has been attempted seriously is Asiatic cholera. This disease in times of epidemics is so severe and the chance of infection is so great as to justify such inoculation.

Several bacteriologists have in the last few years been trying to discover a harmless method of inoculating against this disease.

Apparently they have succeeded, for experiments in India, the home of the cholera, have been as successful as could be antic.i.p.ated.

Bacteriological science has now in its possession a means of inoculation against cholera which is perhaps as efficacious as vaccination is against smallpox. Whether it will ever be used to any extent is doubtful, since, as already pointed out, we are in a position to avoid cholera epidemics by other means. If we can protect our communities by guarding the water supply, it is not likely that the method of inoculation will ever be widely used.

Another instance of the application of preventive inoculation has been made, but one based upon a different principle. Hydrophobia is certainly one of the most horrible of diseases, although comparatively rare. Its rarity would effectually prevent mankind from submitting to a general inoculation against it, but its severity would make one who had been exposed to it by the bite of a rabid animal ready to submit to almost any treatment that promised to ward off the disease. In the attempt to discover a means of inoculating against this disease it was necessary, therefore, to find a method that could be applied after the time of exposure--i.e., after the individual had been bitten by the rabid animal. Fortunately, the disease has a long period of incubation, and one that has proved long enough for the purpose. A method of inoculation against this disease has been devised by Pasteur, which can be applied after the individual has been bitten by the rabid animal. Apparently, however, this preventive inoculation is dependent upon a different principle from vaccination or inoculation against anthrax. It does not appear to give rise to a mild form of the disease, thus protecting the individual, but rather to an acquired tolerance of the chemical poisons produced by the disease. It is a well-known physiological fact that the body can become accustomed to tolerate poisons if inured to them by successively larger and larger doses. It is by this power, apparently, that the inoculation against hydrophobia produces its effect. Material containing the hydrophobia poison (taken from the spinal cord of a rabbit dead with the disease) is injected into the individual after he has been bitten by a rabid animal. The poisonous material in the first injection is very weak, but is followed later by a more powerful inoculation. The result is that after a short time the individual has acquired the power of resisting the hydrophobia poisons. Before the incubation period of the original infectious matter from the bite of the rabid animal has pa.s.sed, the inoculated individual has so thoroughly acquired a tolerance of the poison that he successfully resists the attack of the infection. This method of inoculation thus neutralizes the effects of the disease by antic.i.p.ating them.

The method of treatment of hydrophobia met with extraordinarily violent opposition. For several years it was regarded as a mistake. But the constantly acc.u.mulating statistics from the Pasteur Inst.i.tute have been so overwhelmingly on one side as to quiet opposition and bring about a general conviction that the method is a success.

The method of preventive inoculation has not been extensively applied to human diseases in addition to those mentioned. In a few cases a similar method has been used to guard against diphtheria.

Among animals, experiment has shown that such methods can quite easily be obtained, and doubtless the same would be true of mankind if it was thought practical or feasible to apply them.

But, for reasons mentioned, this feature of preventive medicine will always remain rather unimportant, and will be confined to a few of the more violent diseases.

It may be well to raise the question as to why a single attack with recovery conveys immunity. This question is really a part of the one already discussed as to the method by which the body cures disease. We have seen that this is in part due to the development of chemical substances which either neutralize the poisons or act as germicide upon the bacteria, or both, and perhaps due in part to an active destruction of bacteria by cellular activity (phagocytosis). There is little reason to doubt that it is the same set of activities which renders the animal immune. The forces which drive off the invading bacteria in one case are still present to prevent a second attack of the same species of bacterium. The length of time during which these forces are active and sufficient to cope with any new invaders determines the length of time during which the immunity lasts. Until, therefore, we can answer with more exactness just how cure is brought about in case of disease, we shall be unable to explain the method of immunity.

LIMITS OF PREVENTIVE MEDICINE.

With all the advance in preventive medicine we can not hope to avoid disease entirely. We are discovering that the sources of disease are on all sides of us, and so omnipresent that to avoid them completely is impossible. If we were to apply to our lives all the safeguards which bacteriology has taught us should be applied in order to avoid the different diseases, we would surround ourselves with conditions which would make life intolerable. It would be oppressive enough for us to eat no food except when it is hot, to drink no water except when boiled, and to drink no milk except after sterilization; but these would not satisfy the necessary conditions for avoiding disease. To meet all dangers, we should handle nothing which has not been sterilized, or should follow the handling by immediately sterilizing the hands; we should wear only disinfected clothes, we should never put our fingers in our mouths or touch our food with them; we should cease to ride in public conveyances, and, indeed, should cease to breathe common air. Absolute prevention of the chance of infection is impossible. The most that preventive medicine can hope for is to point out the most common and prolific sources of infection, and thus enable civilized man to avoid some of his most common troubles. It becomes a question, therefore, where we will best draw the line in the employment of safeguards. Shall we drink none except sterilized milk, and no water unless boiled? or shall we put these occasional sources of danger in the same category with bicycle and railroad accidents, dangers which can be avoided by not using the bicycle or riding on the rail, but in regard to which the remedy is too oppressive for application?

Indeed, when viewed in a broad philosophical light it may not be the best course for mankind to shun all dangers. Strength in the organism comes from the use rather than the disuse of our powers.

It is certain that the general health and vigour of mankind is to be developed by meeting rather than by shunning dangers.

Resistance to disease means bodily vigour, and this is to be developed in mankind by the application of the principle of natural selection. In accordance with this principle, disease will gradually remove the individuals of weak resisting powers, leaving those of greater vigour. Parasitic bacteria are thus a means of preventing the continued life of the weaker members of the community, and so tend to strengthen mankind. By preventive medicine many a weak individual who would otherwise succ.u.mb earlier in the struggle is enabled to live a few years longer.

Whatever be our humanitarian feeling for the individual, we can not fail to admit that this survival of the weak is of no benefit to the race so far as the development of physical nature is concerned. Indeed, if we were to take into consideration simply the physical nature of man we should be obliged to recommend a system such as the ancient Spartans developed, of exposing to death all weakly individuals, that only the strong might live to become the fathers of future generations. In this light, of course, parasitic diseases would be an a.s.sistance rather than a detriment to the human race. Of course such principles will never again be dominant among men, and our conscience tells us to do all we can to help the weak. We shall doubtless do all possible to develop preventive medicine in order to guard the weak against parasitic organisms. But it is at all events well for us to remember that we can never hope to develop the strength of the human race by shunning evil, but rather by combating it, and the power of the human race to resist the invasions of these organisms will never be developed by the line of action which guards us from attack. Here, as in other directions, the principles of modern humanity have, together with their undoubted favourable influence upon mankind, certain tendencies toward weakness. While we shall still do our utmost to develop preventive medicine in a proper way, it may be well for us to remember these facts when we come to the practical question of determining where to draw the limits of the application of methods for preventing infectious diseases.

CURATIVE MEDICINE.

Bacteriology has. .h.i.therto contributed less to curative than to preventive medicine. Nevertheless, its contributions to curative medicine have not been unimportant, and there is promise of much more in the future. It is, of course, unsafe to make predictions for the future, but the accomplishments of the last few years give much hope as to further results.

DRUGS.

It was at first thought that a knowledge of the specific bacteria which cause a disease would give a ready means of finding specific drugs for the cure of such disease. If a definite species of bacterium causes a disease and we can cultivate the organism in the laboratory, it is easy to find some drugs which will be fatal to its growth, and these same drugs, it would seem, should be valuable as medicines in these diseases. This hope has, however, proved largely illusive. It is very easy to find some drug which proves fatal to the specific germs while growing in the culture media of the laboratory, but commonly these are of little or no use when applied as medicines. In the first place, such substances are usually very deadly poisons. Corrosive sublimate is a substance which destroys all pathogenic germs with great rapidity, but it is a deadly poison, and can not be used as a drug in sufficient quant.i.ty to destroy the parasitic bacteria in the body without at the same time producing poisonous effects on the body itself. It is evident that for any drug to be of value in thus destroying bacteria it must have some specially strong action upon the bacteria. Its germicide action on the bacteria should be so strong that a dose which would be fatal or very injurious to them would be too small to have a deleterious influence on the body of the individual. It has not proved an easy task to discover drugs which will have any value as germicides when used in quant.i.ties so small as to produce no injurious effect on the body.