Part 5 (1/2)
These poisons, produced in the first stages of putrefaction, are oxidized by further stages of decomposition into harmless products. But should it happen that some of these bacteria obtained a chance to grow vigorously for a while in organic products that are subsequently swallowed as man's food, it is plain that evil results might follow. If such food is swallowed by man after the bacteria have produced their poisonous bodies, it will tend to produce an immediate poisoning of his system. The effect may be sudden and severe if considerable quant.i.ty of the poisonous material is swallowed, or slight but protracted if small quant.i.ties are repeatedly consumed in food. Such instances are not uncommon. Well-known examples are cases of ice-cream poisoning, poisoning from eating cheese or from drinking milk, or in not a few instances from eating fish or meats within which bacteria have had opportunity for growth. In all these cases the poison is swallowed in quant.i.ty sufficient to give rise quickly to severe symptoms, sometimes resulting fatally, and at other times pa.s.sing off as soon as the body succeeds in throwing off the poisons. In other cases still, however, the amount of poison swallowed may be very slight, too slight to produce much effect unless the same be consumed repeatedly. All such trouble may be attributed to fermented or partly decayed food. It is difficult to distinguish such instances from others produced in a slightly different way, as follows:
It may happen that the bacteria which grow in food products continue to grow in the food even after it is swallowed and has pa.s.sed into the stomach or intestines. This appears particularly true of milk bacteria. Under these conditions the bacteria are not in any proper sense parasitic, since they are simply living in and feeding upon the same food which they consume outside the body, and are not feeding upon the tissues of man. The poisons which they produce will continue to be developed as long as the bacteria continue to grow, whether in a milk pail or a human stomach. If now the poisons are absorbed by the body, they may produce a mild or severe disease which will be more or less lasting, continuing perhaps as long as the same food and the same bacteria are supplied to the individual. The most important disease of this cla.s.s appears to be the dreaded cholera infantum, so common among infants who feed upon cow's milk in warm weather. It is easy to understand the nature of this disease when we remember the great number of bacteria in milk, especially in hot weather, and when we remember that the delicate organism of the infant will be thrown at once into disorder by slight amounts of poison which would have no appreciable effect upon the stronger adult. We can easily understand, further, how the disease readily yields to treatment if care is taken to sterilize the milk given to the patient.
We do not know to-day the extent of the troubles which are produced by bacteria of this sort. They will, of course, be chiefly connected with our food products, and commonly, though not always, will affect the digestive functions. It is probable that many of the cases of summer diarrhoea are produced by some such cause, and if they could be traced to their source would be found to be produced by bacterial poisons swallowed with food or drink, or by similar poisons produced by bacteria growing in such food after it is swallowed by the individual. In hot weather, when bacteria are so abundant everywhere and growing so rapidly, it is impossible to avoid such dangers completely without exercising over all food a guard which would be decidedly oppressive. It is well to bear in mind, however, that the most common and most dangerous source of such poisons is milk or its products, and for this reason one should hesitate to drink milk in hot weather unless it is either quite fresh or has been boiled to destroy its bacteria.
PATHOGENIC BACTERIA WHICH ARE TRUE PARASITES.
This cla.s.s of pathogenic bacteria includes those which actually invade the body and feed upon its tissues instead of living simply upon swallowed food. It is difficult, however, to draw any sharp line separating the two cla.s.ses. The bacteria which cause diphtheria (Fig. 28), for instance, do not really invade the body.
They grow in the throat, attached to its walls, and are confined to this external location or to the superficial tissues. This bacillus is, in short, only found in the mouth and throat, and is practically confined to the so-called false membranes. It never enters any of the tissues of the body, although attached to the mucous membrane. It grows vigorously in this membrane, and there secretes or in some way produces extremely violent poisons. These poisons are then absorbed by the body and give rise to the general symptoms of the disease. Much the same is true of the bacillus which causes teta.n.u.s or lockjaw (Fig. 29). This bacillus is commonly inoculated into the flesh of the victim by a wound made with some object which has been lying upon the earth where the bacillus lives. The bacillus grows readily after being inoculated, but it is localized at the point of the wound, without invading the tissue to any extent. It produces, however, during its growth several poisons which have been separated and studied. Among them are some of the most violent poisons of which we have any knowledge. While the bacillus grows in the tissues around the wound it secretes these poisons, which are then absorbed by the body generally. Their poisoning effects produce the violent symptoms of the disease. Of much the same nature is Asiatic cholera. This is caused by a bacillus which is able to grow rapidly in the intestines, feeding perhaps in part on the food in the intestines and perhaps in part upon the body secretions. To a slight extent also it appears to be able to invade the tissues of the body, for the bacilli are found in the walls of the intestines. But it is not a proper parasite, and the fatal disease it produces is the result of the absorption of the poisons secreted in the intestines.
It is but a step from this to the true parasites. Typhoid fever, for example, is a disease produced by bacteria which grow in the intestines, but which also invade the tissues more extensively than the cholera germs (Fig. 30). They do not invade the body generally, however, but become somewhat localized in special glands like the liver, the spleen, etc. Even here they do not appear to find a very favourable condition, for they do not grow extensively in these places. They are likely to be found in the spleen in small groups or centres, but not generally distributed through it. Wherever they grow they produce poison, which has been called typhotoxine, and it is this poison chiefly which gives rise to the fever.
Quite a considerable number of the pathogenic germs are, like the typhoid bacillus, more or less confined to special places. Instead of distributing themselves through the body after they find entrance, they are restricted to special organs. The most common example of a parasite of this sort is the tuberculosis bacillus, the cause of consumption, scrofula, white swelling, lupus, etc.
(Fig. 31). Although this bacillus is very common and is able to attack almost any organ in the body, it is usually very restricted in growth. It may become localized in a small gland, a single joint, a small spot in the lungs, or in the glands of the mesentery, the other parts of the body remaining free from infection. Not infrequently the whole trouble is thus confined to such a small locality that nothing serious results. But in other instances the bacilli may after a time slowly or rapidly distribute themselves from these centres, attacking more and more of the body until perhaps fatal results follow in the end. This disease is therefore commonly of very slow progress.
Again, we have still other parasites which are not thus confined, but which, as soon as they enter the body, produce a general infection, attacking the blood and perhaps nearly all tissues simultaneously. The most typical example of this sort is anthrax or malignant pustule, a disease fortunately rare in man (Fig. 32).
Here the bacilli multiply in the blood, and very soon a general and fatal infection of the whole body arises, resulting from the abundance of the bacilli everywhere. Some of the obscure diseases known as blood poisoning appear to be of the same general nature, these diseases resulting from a very general invasion of the whole body by certain pathogenic bacteria.
In general, then, we see that the so-called germ diseases result from the action upon the body of poisons produced by bacterial growth. Differences in the nature of these poisons produce differences in the character of the disease, and differences in the parasitic powers of the different species of bacteria produce wide differences in the course of the diseases and their relation to external phenomena.
WHAT DISEASES ARE DUE TO BACTERIA?
It is, of course, an extremely important matter to determine to what extent human diseases are caused by bacteria. It is not easy, nor indeed possible, to do this to-day with accuracy. It is no easy matter to prove that any particular disease is caused by bacteria. To do this it is necessary to find some particular bacterium present in all cases of the disease; to find some method of getting it to grow outside the body in culture media; to demonstrate its absence in healthy animals, or healthy human individuals if it be a human disease; and, finally, to reproduce the disease in healthy animals by inoculating them with the bacterium. All of these steps of proof present difficulties, but especially the last one. In the study of animals it is comparatively easy to reproduce a disease by inoculation. But experiments upon man are commonly impossible, and in the case of human diseases it is frequently very difficult or impossible to obtain the final test of the matter. After finding a specific bacterium a.s.sociated with a disease, it is usually possible to experiment with it further upon animals only. But some human diseases do not attack animals, and in the case of diseases that may be given to animals it is frequently uncertain whether the disease produced in the animal by such inoculation is identical with the human disease in question, owing to the difference of symptoms in the different animals. As a consequence, the proof of the germ nature of different diseases varies all the way from absolute demonstration to mere suspicion. To give a complete and correct list of the diseases caused by bacteria, or to give a list of the bacteria species pathogenic to man, is therefore at present impossible.
The difficulty of giving such a list is rendered greater from the fact that we have in recent years learned that the same species of pathogenic bacterium may produce different results under different conditions. When the subject of germ disease was first studied and the connection between bacteria and disease was first demonstrated, it was thought that each particular species of pathogenic bacteria produced a single definite disease; and conversely, each germ disease was supposed to have its own definite species of bacterium as its cause. Recent study has shown, however, that this is not wholly true. It is true that some diseases do have such a definite relation to definite bacteria.
The anthrax germ, for example, will always produce anthrax, no matter where or how it is inoculated into the body. So, also, in quite a number of other cases distinct specific bacteria are a.s.sociated with distinct diseases. But, on the other hand, there are some pathogenic bacteria which are not so definite in their action, and produce different results in accordance with circ.u.mstances, the effect varying both with the organ attacked and with the condition of the individual. For instance, a considerable number of different types of blood poisoning, septicaemia, pyaemia, gangrene, inflammation of wounds, or formation of pus from slight skin wounds--indeed, a host of miscellaneous troubles, ranging all the way from a slight pus formation to a violent and severe blood poisoning--all appear to be caused by bacteria, and it is impossible to make out any definite species a.s.sociated with the different types of these troubles. There are three common forms of so-called pus cocci, and these are found almost indiscriminately with various types of inflammatory troubles.
Moreover, these species of bacteria are found with almost absolute constancy in and around the body, even in health. They are on the clothing, on the skin, in the mouth and alimentary ca.n.a.l. Here they exist, commonly doing no harm. They have, however, the power of doing injury if by chance they get into wounds. But their power of doing injury varies both with the condition of the individual and with variations in the bacteria themselves. If the individual is in a good condition of health these bacteria have little power of injuring him even when they do get into such wounds, while at times of feeble vitality they may do much more injury, and take the occasion of any little cut or bruise to enter under the skin and give rise to inflammation and pus. Some people will develop slight abscesses or slight inflammations whenever the skin is bruised, while with others such bruises or cuts heal at once without trouble. Both are doubtless subject to the same chance of infection, but the one resists, while the other does not. In common parlance, we say that such a tendency to abscesses indicates a bad condition of the blood--a phrase which means nothing. Further, we find that the same species of bacterium may have varying powers of producing disease at different times. Some species are universal inhabitants of the alimentary ca.n.a.l and are ordinarily harmless, while under other conditions of unknown character they invade the tissues and give rise to a serious and perhaps fatal disease. We may thus recognise some bacteria which may be compared to foreign invaders, while others are domestic enemies. The former, like the typhoid bacillus, always produce trouble when they succeed in entering the body and finding a foothold. The latter, like the normal intestinal bacilli, are always present but commonly harmless, only under special conditions becoming troublesome. All this shows that there are other factors in determining the course of a disease, or even the existence of a disease, than the simple presence of a peculiar species of pathogenic bacterium.
From the facts just stated it will be evident that any list of germ diseases will be rather uncertain. Still, the studies of the last twenty years or more have disclosed some definite relations of bacteria and disease, and a list of the diseases more or less definitely a.s.sociated with distinct species of bacteria is of interest. Such a list, including only well-known diseases, is as follows:
Name of disease. Name of bacterium producing the disease.
Anthrax (Malignant pustule). Bacillus anthracis.
Cholera. Spirillum cholera: asiaticae Croupous pneumonia. Micrococcus pneumonia crouposa.
Diphtheria. Bacillus diphtheria.
Glanders. Bacillus mallei.
Gonorrhoea. Micrococcus gonorrhaeae Influenza. Bacillus of influenza.
Leprosy. Bacillus leprae.
Relapsing fever. Spirillum Obermeieri.
Teta.n.u.s (lockjaw). Bacillus tetani.
Tuberculosis (including consumption, scrofula, etc.) Bacillus tuberculosis.
Typhoid fever. Bacillus typhi abdominalis.
Various wound infections, including septicaemia, pyaemia, acute abscesses, ulcers, erysipelas, etc., are produced by a few forms of micrococci, resembling each other in many points but differing slightly. They are found almost indiscriminately in any of these wound infections, and none of them appears to have any definite relation to any special form of disease unless it be the micrococcus of erysipelas. The common pus micrococci are grouped under three species, Staphylococcus pyogenes aureus, Staphylococcus pyogenes, and Streptococcus pyogenes. These three are the most common, but others are occasionally found.
In addition to these, which may be regarded as demonstrated, the following diseases are with more or less certainty regarded as caused by distinct specific bacteria: Bronchitis, endocarditis, measles, whooping-cough, peritonitis, pneumonia, syphilis.
Still another list might be given of diseases whose general nature indicates that they are caused by bacteria, but in connection with which no distinct bacterium has yet been found. As might be expected also, a larger list of animal diseases has been demonstrated to be caused by these organisms. In addition, quite a number of species of bacteria have been found in such material as faeces, putrefying blood, etc., which have been shown by experiment to be capable of producing diseases in animals, but in regard to which we have no evidence that they ever do produce actual disease under any normal conditions. These may contribute, perhaps, to the troubles arising from poisonous foods, but can not be regarded as disease germs proper.