Part 3 (2/2)
2. Bricks should be made in Spring or Autumn, so that they may dry uniformly. Those made in Summer are defective, because the fierce heat of the sun bakes their surface and makes the brick seem dry while inside it is not dry. And so the shrinking, which follows as they dry, causes cracks in the parts which were dried before, and these cracks make the bricks weak. Bricks will be most serviceable if made two years before using; for they cannot dry thoroughly in less time. When fresh undried bricks are used in a wall, the stucco covering stiffens and hardens into a permanent ma.s.s, but the bricks settle and cannot keep the same height as the stucco; the motion caused by their shrinking prevents them from adhering to it, and they are separated from their union with it. Hence the stucco, no longer joined to the core of the wall, cannot stand by itself because it is so thin; it breaks off, and the walls themselves may perhaps be ruined by their settling. This is so true that at Utica in constructing walls they use brick only if it is dry and made five years previously, and approved as such by the authority of a magistrate.
3. There are three kinds of bricks. First, the kind called in Greek Lydian, being that which our people use, a foot and a half long and one foot wide. The other two kinds are used by the Greeks in their buildings. Of these, one is called [Greek: pentadoron], the other [Greek: tetradoron]. [Greek: Doron] is the Greek for ”palm,” for in Greek [Greek: doron] means the giving of gifts, and the gift is always presented in the palm of the hand. A brick five palms square is called ”pentadoron”; one four palms square ”tetradoron.” Public buildings are constructed of [Greek: pentadora], private of [Greek: tetradora].
4. With these bricks there are also half-bricks. When these are used in a wall, a course of bricks is laid on one face and a course of half-bricks on the other, and they are bedded to the line on each face.
The walls are bonded by alternate courses of the two different kinds, and as the bricks are always laid so as to break joints, this lends strength and a not unattractive appearance to both sides of such walls.
[Ill.u.s.tration: VITRUVIUS' BRICK-BOND ACCORDING TO REBER]
In the states of Maxilua and Callet, in Further Spain, as well as in Pitane in Asia Minor, there are bricks which, when finished and dried, will float on being thrown into water. The reason why they can float seems to be that the clay of which they are made is like pumice-stone.
So it is light, and also it does not, after being hardened by exposure to the air, take up or absorb liquid. So these bricks, being of this light and porous quality, and admitting no moisture into their texture, must by the laws of nature float in water, like pumice, no matter what their weight may be. They have therefore great advantages; for they are not heavy to use in building and, once made, they are not spoiled by bad weather.
CHAPTER IV
SAND
1. In walls of masonry the first question must be with regard to the sand, in order that it may be fit to mix into mortar and have no dirt in it. The kinds of pitsand are these: black, gray, red, and carbuncular.
Of these the best will be found to be that which crackles when rubbed in the hand, while that which has much dirt in it will not be sharp enough.
Again: throw some sand upon a white garment and then shake it out; if the garment is not soiled and no dirt adheres to it, the sand is suitable.
2. But if there are no sandpits from which it can be dug, then we must sift it out from river beds or from gravel or even from the sea beach.
This kind, however, has these defects when used in masonry: it dries slowly; the wall cannot be built up without interruption but from time to time there must be pauses in the work; and such a wall cannot carry vaultings. Furthermore, when sea-sand is used in walls and these are coated with stucco, a salty efflorescence is given out which spoils the surface.
3. But pitsand used in masonry dries quickly, the stucco coating is permanent, and the walls can support vaultings. I am speaking of sand fresh from the sandpits. For if it lies unused too long after being taken out, it is disintegrated by exposure to sun, moon, or h.o.a.r frost, and becomes earthy. So when mixed in masonry, it has no binding power on the rubble, which consequently settles and down comes the load which the walls can no longer support. Fresh pitsand, however, in spite of all its excellence in concrete structures, is not equally useful in stucco, the richness of which, when the lime and straw are mixed with such sand, will cause it to crack as it dries on account of the great strength of the mixture. But river sand, though useless in ”signinum” on account of its thinness, becomes perfectly solid in stucco when thoroughly worked by means of polis.h.i.+ng instruments.
CHAPTER V
LIME
1. Sand and its sources having been thus treated, next with regard to lime we must be careful that it is burned from a stone which, whether soft or hard, is in any case white. Lime made of close-grained stone of the harder sort will be good in structural parts; lime of porous stone, in stucco. After slaking it, mix your mortar, if using pitsand, in the proportions of three parts of sand to one of lime; if using river or sea-sand, mix two parts of sand with one of lime. These will be the right proportions for the composition of the mixture. Further, in using river or sea-sand, the addition of a third part composed of burnt brick, pounded up and sifted, will make your mortar of a better composition to use.
2. The reason why lime makes a solid structure on being combined with water and sand seems to be this: that rocks, like all other bodies, are composed of the four elements. Those which contain a larger proportion of air, are soft; of water, are tough from the moisture; of earth, hard; and of fire, more brittle. Therefore, if limestone, without being burned, is merely pounded up small and then mixed with sand and so put into the work, the ma.s.s does not solidify nor can it hold together. But if the stone is first thrown into the kiln, it loses its former property of solidity by exposure to the great heat of the fire, and so with its strength burnt out and exhausted it is left with its pores open and empty. Hence, the moisture and air in the body of the stone being burned out and set free, and only a residuum of heat being left lying in it, if the stone is then immersed in water, the moisture, before the water can feel the influence of the fire, makes its way into the open pores; then the stone begins to get hot, and finally, after it cools off, the heat is rejected from the body of the lime.
3. Consequently, limestone when taken out of the kiln cannot be as heavy as when it was thrown in, but on being weighed, though its bulk remains the same as before, it is found to have lost about a third of its weight owing to the boiling out of the water. Therefore, its pores being thus opened and its texture rendered loose, it readily mixes with sand, and hence the two materials cohere as they dry, unite with the rubble, and make a solid structure.
CHAPTER VI
<script>