Part 2 (2/2)
On the other hand, if the Was.h.i.+ngton people are tired of it they need only escape to Arizona where it rains about two inches a year, and they can live in an enterprising hotel down there whose manager believes that it pays to advertise the sun. He guarantees to provide free board on every day that the sun doesn't s.h.i.+ne.
In the plateau section enough snow falls every year to store up enough water for irrigation purposes, and the little rain that falls arrives in just the right season to do the most good, the spring. In California what the farmers lose in amount they make up in the regularity of its arrival.
North of the Ohio River most of the precipitation from November to April is snow. About 50 inches of it falls on the average over this tremendous territory. And it is more useful than rain,--the handy blanket that makes lumber-hauling easy, that keeps the ground from freezing to Arctic depths, that fertilizes the soil, and that acts as a great reservoir, holding over the meat and drink of the vegetable kingdom till the thirsty time arrives. In upper Michigan and Maine the average depth becomes 100 inches. Averages are very misleading when snowfall is being considered, some winters producing very scanty amounts and others heaping it on to the depth of 185 inches once at North Volney, New York.
South of the Ohio the depth varies from substantial amounts in some winters to almost nothing in others. Snow has been observed, however, in every part of our country except the extreme southern tip of Florida. Once and only once on the records a great three-day snowstorm visited all of southern California, extending to the Mexican border and to the coast.
The strip of country between the parallels of New York City and Richmond comprises the section wherein each winter storm is one large guess as to whether the precipitation is to be snow or rain. A compromise is usually affected in this way. Before the clouding up began the mercury may have stood at ten degrees below zero. As soon as the wind acquired an easterly slant the temperature increased. As it neared the freezing point the snow would begin, first in flakes of medium size which would enlarge until after a particularly heavy fall of a few minutes they would at once almost cease. Hail soon would succeed, the mercury still rising, and often the hail would have turned to rain before the freezing point of the air of the immediate surface of the earth had been reached, turning the snow already on the ground to slush and making a holiday for germs.
One can always tell when this change to warmer is about to occur because the clouds which have been part and parcel with the obscuring snow suddenly show, not lighter but darker. The sudden increase in size of the flakes is another infallible symptom of increasing warmth in the atmosphere for each large flake is a compound of many smaller ones. When the temperature is low the flakes are very small, being grains and spicules in the severe blizzards of the west and falling as snow-dust in the Arctic. In the heavy storms of the guessing-belt the flakes are not necessarily small.
I have noticed (in the lat.i.tude of Philadelphia) that our largest storms begin very leisurely indeed with small and regular-sized flakes. A quarter of an inch may not fall in the first hour. As the center nears the snow comes ever faster and larger, but not large, flakes are mixed with the original-sized flakes. Snow dust is apparent. At the height of the storm flakes of all sizes except the very large are falling, denoting great activity in the strata of air within the storm influence. In the ordinary storm an acc.u.mulation at the rate of an inch an hour denotes a storm of considerable intensity.
The snow will likely keep on falling as long as the flakes are irregular in size. If they grow large and few or very small a cessation is likely, even though the wind is still blowing from an easterly quarter. The amount of snow likely to fall can be gauged not only by the process of flake-change but by the rate at which the wind rises. A storm's intensity is measured by the amount of wind. A storm can be a storm without a drop of rain or flake of snow if only there be enough wind. And as long as the wind in a snowstorm keeps rising the storm is likely to go on, probably increasing in volume of precipitation.
If the wind shows a tendency to edge around to the southeast there is danger of the snow turning to rain; if the wind veers slowly to the northeast the temperature will fall slowly and the rate of precipitation will likely increase for a while. In such instances the snow does not continue to fall after the wind has swung west of north. Often clearing takes place with the wind still in the north or even a point east of north.
Contrary to superst.i.tion snow may begin to fall at any hour of the day or night. But certain hours seem more propitious than others, owing no doubt to the tendency of cooling air to condense. Three o'clock of an afternoon and eight o'clock in the morning are favorite times, the one being the hour of a winter afternoon when cooling is begun, the other the hour when the coldest time is reached and condensation likely if at all. Of course, one remembers storms beginning at nine, ten, eleven, and every other hour.
Storms that begin in the morning seldom reach much activity before three o'clock in the afternoon, while those that begin then quickly increase in intensity as evening draws near and the sun's warmth is withdrawn from the upper air-strata. More snow falls at night than in the daytime, also. Snow is more delicate than rain and perhaps more responsive than rain to the subtle changes of the atmosphere. Possibly there is no ground on the Bureau records for these ideas, possibly storms have a tendency to start from the Gulf on their northeastward journey and so reach Philadelphia oftener at one time than another. I would like my notions confirmed that snowstorms increase at nightfall, and that they prefer to start operations at sunrise and about sunset.
For the camper the snowstorm need have no terrors. It gives a long warning of its approach. It comes mostly without destructive winds. Its upholstery protects and warms the walls of one's tent. It adds beauty to the leafless woods, interest to the trailer, and a hundred amus.e.m.e.nts among the hills.
But the value of snowy weather is not only measured by its beauties and commercial uses. There is another way: make it read character for you. Watch the reactions toward the first snowfall of half a dozen kinds of people. It will show you what they are; give you a very fair measure of their youth.
Our atmosphere contains a lot of moisture that never gets precipitated. You can prove this on any warm day by noticing the way the atmosphere acts toward a gla.s.s of ice-water. When the air of the room is much warmer than the surface of the gla.s.s it surrenders its moisture w.i.l.l.y nilly. Sometimes this condensation is enough to cause a miniature rainstorm that trickles down the outside of the tumbler. If a small cold surface can wring so much water out of a little air it is small wonder that we get an inch or so of rain from vast currents of air at unequal temperatures.
Try to visualize the process. A stream of vapor has been warmed and is ascending. A mile up and it has cooled not only by the reason of alt.i.tude but also by the process itself. About each little dust-particle in the surrounding area vapor forms--vapor cannot form without something to form on, there being always enough dust from deserts and volcanoes to go round. If the cooling proceeds the tiny globules enlarge and as they increase in weight they settle and fall. Falling, they unite with others.
If the air-strata are very warm and thick the drops may grow to a very considerable size. We see these in the middle of our great winter rains when the insweep of southern winds with all their warmth and moisture is very extensive. Also the first few drops that come from the thick, hot lips of the thundercloud are usually immense.
The best way to measure the size of a raindrop is to have it fall in a box of dry sand. It rolls up the sand and measurements can be easily and accurately made. But the most interesting way is to let the first drops of the thunderstorm fall upon a sheet of blotting paper. If the same sort of blotting paper is used the measurements will be of just as much importance for comparison. Circles as big as teacups are formed sometimes.
Heavy drops in winter mean a heavy fall, because they denote high temperatures which are uncommon and are bound to be followed by considerable condensation as the cooling proceeds back to normal temperatures. Small drops in summer mean either cooler weather, or sudden condensation. Small drops in winter are a sign of very thin moisture-bearing strata, or low temperatures, indicating that the rain will be light, protracted, and liable to change to snow.
Hail is frozen rain. Winter hail is small and harmless and rarely falls to any depth because the exact temperatures that bring forth the hail rarely continue for very long at a time. Hail in winter is merely the stepping stone to either rain or snow. But in summer hail is a serious matter. It shows that there is a violent disturbance of the atmosphere in progress. Vertical air currents, probably abetted by electricity,--the authorities are not sure--often carry the stones up several times. They take on layer after layer, coalesce, and sometimes fall the size of eggs, apples, or any other fruit, barring melons. The usual summer hail does not exceed the size of a robin's egg. Even a projectile of that size, however, falling for a half mile or more has a tremendous destructive power. Greenhouses suffer, birds are killed, cattle stunned, and loss of life has been known to follow. In August in 1851 in New Hamps.h.i.+re hailstones fell to the weight of 18 ounces, diameter 4 inches, circ.u.mference 12 inches. In Pittsburgh stones weighing a full pound have crashed down, and in Europe where many destructive storms have occurred there are official records of even greater phenomena. The lightning accompanying these hailstones is usually very severe. A flake or ball of snow forms the nucleus of a hailstone.
If a thundercloud looks particularly black or if it can be seen in commotion think of hail and seek shelter. It is pretty difficult to predict exactly when hail is going to fall in summer. It is a possibility with every large storm, but a probability with only a very few during the summer. It accompanies tornadoes.
In winter hail falls before a rainstorm, even when the ground temperature precludes the possibility of snow; some lingering stratum of cold air has ensnared the drops on their way down.
Snow is not frozen rain. It has an origin of its own. It is born in a temperature consistently below freezing and on the condensation of the invisible moisture becomes visible as a tiny crystal. These infinitesimal crystals unite and form larger, hexagonal shapes, elongated or starry. They are wafted along, sinking, all slightly differing one from another, although forming a few types. These types have been photographed and catalogued and very often the alt.i.tude from which the snow is coming may be learned from their shape and design. But this branch of science is young yet and confusing and the outdoor man has surer signs of the vicissitudes of the storm, in the general size of the flakes, the power and direction of the wind, the clouds and temperature. The possibilities of flake-study as a means of forecasting are many and of value as is anything that tends to unveil the secrets of the greater heights.
Snowflakes are so light that after the storm processes are over and the sun has come out the residue may still float lazily to the ground.
The wild disorder of the snow flurry will only last a few minutes and never leave much snow on the ground.
Snowstorms that come on the wings of the west wind may be severe, but they will be short. They are unusual in the east, but sometimes the heaviest snows of the western states come on the sudden cooling that follows the s.h.i.+ft to west.
Snowstorms arriving on a high wind last only a few hours.
Snowstorms that are long in gathering and increase to considerable intensity continue a long while.
Those that follow a sudden clouding up are of no importance.
The snowstorms that leave on a high wind from the west or northwest are followed by a cold wave. Those that continue after the storm wind has died away are succeeded by calm, clear, and usually warmer weather.
In northern districts a snowstorm may be looked for after a period of cold weather. In middle districts if the cold has been severe the reaction to warmer may bring rain instead. In such cases generalities are of no use, and the possibilities must be determined by the man on the spot. The best conditions for snow through the middle districts are occasioned by an area of low-pressure with its attendant precipitation crossing the southern half of the country while the northern half is under the influence of an area of high-pressure with its attendant frigidity. The cold air flows into the southern storm with the result that the middle districts get the northern quadrants of the storm which are the usual snow-bearing ones instead of the southern rain-bearing quadrants that they would have got if the center of the storm had pursued its usual course up the Ohio and down the St. Lawrence.
If the storm has two centers, one over Texas and the other over Montana, as is so frequently the case in winter, the subsequent high pressure will come too late to affect the temperature of the zone of precipitation and the latter will likely be rain in the middle districts. Sometimes the cyclones cross the country on the Canadian border and enough warm air is sucked over the line to give the inhabitants of Montreal a thaw and rain. This happens to them only once or twice a winter. And even more rarely a cyclone over the Gulf with an anticyclone above it will give the Gulf States a taste of winter, but rarely more than a few flakes.
It really all depends on the influx of air, its rate and direction. It rains in Alaska and snows in Georgia on the same day merely because at one place the air is coming off the Pacific, and at the other it is flowing from the center of a refrigerated continent.
And the progress of these storms is one of Nature's greatest poems if you take a minute to think of them sweeping on in majesty, the one thing that man cannot control. Even the snow which is the citizens' curse as well as the farmers' blessing becomes epic when it beleaguers an empire for half a year.
DEW AND FROST.
The very process that made the tumbler of ice-water sweat on the hot day causes dew. And the formation of frost is a.n.a.logous to that of snow. Frost is not frozen dew, but the formation of moisture crystals at the temperature of 32 or below. Frost or dew form only on still, cloudless nights. Even if no clouds are visible, neither will form if a stratum of humid air has prevented radiation. Hence either dew or frost is a fairly good sign of clear weather.
Three white frosts on successive mornings are followed by a rain. This saying holds water not because there is any virtue in frost to cause rain, but because a storm is normally due once a week. The frosts did not form when the anticyclonic winds were blowing and usually not more than three mornings elapse between the time that the anticyclone has lost its influence and the time for the next cyclone to appear. Frost indicates a considerable amount of moisture in the atmosphere, also, which tends to increase as the cyclone approaches.
The heaviest dews come in late summer and the heaviest frosts in mid-autumn because the change in temperature is greatest then and there is a greater chance that there will be a calm at sunrise. The greatest frost damage occurs in the spring because the tenderer crops are growing then. Summer frosts used to occur in the northern parts of Minnesota and along the southern boundaries of the inland Canadian provinces before the forests were cleared off. The march of civilization has actually pushed back the frost line some distance.
Frost may occur when the amount of humidity in the air is low and the barometer rising at any temperature under 50 degrees at nightfall, the clear skies permitting radiation enough under those circ.u.mstances to produce the necessary cooling. An evening temperature of 40 degrees with the clear skies and faint west breeze will almost surely produce a frost, provided the wind drops. In such circ.u.mstances the only hope for the farmer is that there is enough humidity in the air to cause a fog before the frost-point is reached. A temperature touching 34 degrees would not bring frost, however, if the sky was at all overcast. Frost is difficult to predict because a night s.h.i.+ft in the wind, cloudiness that forms after midnight, or even a wind arising before the coolest period at dawn will prevent its formation. On the other hand, clouds may disperse, the wind may fall or radiation may be so rapid before sunrise as to cause a killing frost unawares. The farmer who lives in areas disputed by winter and spring may never be quite sure, but precautions should be taken on the still, clear, dry nights with the thermometer at fifty or below.
Fruit-growers resort to fires or to coverings to protect their crops. The fires are particularly worth while, not so much for their heat which at best cannot be expected to warm up the great outdoors much, but for the smoke which prevents radiation. A line of smudges such as campers use to ward off the mosquito would spread a pall of smoke over an orchard efficaciously. A snowstorm, the soft fluffy sort that falls in April or May, can do much less damage to vegetation than a severe frost.
Temperatures are much lower on the ground than even six feet above the gra.s.s. Naturally these temperatures are those that really influence most vegetation and in England temperatures on the gra.s.s are given in the weather report with the ordinary observations, being as much as six or eight degrees lower on clear nights.
In some of the hot, dry countries, such as Arabia and Egypt, most of the moisture that they receive falls in the form of dew. Falls, of course, is a loose expression as the dew forms and does not fall, being different from the minute particles of fog. The fog particles in suspension in the air are estimated to be as small as 1-180th of an inch. When they grow to 1-80th of an inch in diameter they commence to fall. Fogs are chiefly caused by the soil being warmer than the air above it; the vapor on rising condenses and becomes visible. In the spring and fall currents of air blow over rivers at different temperatures and the result is a fog. One does not have a fog in the desert.
There are places in the ocean with cold and warm currents with the air above them correspondingly different where fog is of almost constant occurrence. The Gulf Stream off the Grand Banks of Newfoundland has a temperature of 78 degrees, while the water on the Banks is 45 degrees so that fogless days are rare along the line of meeting.
Frost is known in every part of our country, many localities in the plateau section being exposed to it every month of the year. The thin air and cloudless skies of the alt.i.tudes make radiation very easy and the daily variation of temperature is much wider than along the humid coasts. Those who have never looked into frost conditions throughout our country will be surprised to read the warnings of the Weather Bureau.
From the station at Pensacola, Florida (frost-proof Florida!), comes this statement: ”Vegetables are subject to damage by frost during all seasons of the year.”
Pittsburgh, Pennsylvania, ”Frost is likely to damage fruit or other crops in May and September.”
Phoenix, Arizona, ”Frost is likely to do damage in December, February, and March.”
Baker City, Oregon, ”Fruit and other crops are most liable to damage by frost in April, May, June, September, and October.”
Kalispell, Montana, ”Frost damage for fruit, May 15th to July 10th; for grain, June 25th to August 1st.”
<script>