Part 9 (2/2)
Personal carbon rationing appears more equitable than the alternatives. Because rationing works by imposing quant.i.ty restrictions at the outset, rather than by raising prices, it does not in itself increase the price of the household and personal energy consumed - provided that society takes steps to create an economy, including affordable goods and services, that does not require the emission of greenhouse gases. Rationing is also fairer than increasing taxes, because personal greenhouse-emission allowances provide free ent.i.tlements to individuals and only impose financial penalties on those who go above their ent.i.tlement, while providing an income supplement to those who use less than their ent.i.tlement. In general, people on low incomes use less energy and emit less carbon dioxide than average (particularly if personal air travel is included), while wealthier people consume more resources and are, therefore, responsible for a greater-than-average level of emissions. Wealthier people will need, on average, to buy allowances from poorer people, who are likely to use less than their ration.
Rationing offers a number of other benefits. It is egalitarian, in that everyone gets an equal, free carbon allowance; it allows people to make choices and to create a personal carbon budget, which is more empowering than simply watching prices automatically go up; it encourages positive behavioural changes, in the knowledge that others, including businesses and the government, are also acting within the scheme; it helps address our depleting energy resources; and it is more effective in reducing emissions when targets are strong.
David Miliband, then British environment secretary (and now foreign secretary), told an audience in 2006 that 'the challenge we face is not about the science or the economic ... it is about politics'. He said that carbon rationing can 'limit the carbon emissions by end users, based on the science, and then use financial incentives to drive efficiency and innovation'.
It does not require much imagination to understand that the corporate 'big end of town' may see the idea of rationing as a direct challenge to their world and to their idea of a free market. They express the fear that strong action to make a safe climate possible will destroy the economic-growth machine. There are a number of responses to this.
Their fear makes no distinction between the fate of an individual corporation and the fate of the economy at large. A safe-climate economy will differ greatly from the current one, and firms that are not adaptable, and that remain in the old economy mode, may fail. The economist Joseph Schumpeter famously described the modern industrial economy as unleas.h.i.+ng gales of 'creative destruction', with waves of innovations sweeping away the innovations of an earlier time. While technologies, products, and organisations might wax and wane, the vibrancy of the economy, as a whole, can be maintained.
For several decades to come, the challenge that we face will be to satisfy the basic human needs of more than six billion people while, at the same time, carrying out the most profound rebuilding of the world economy since the beginning of the industrial revolution. There is also the challenge to take at least 200 billion tonnes of excess carbon dioxide out of the air, and to help the world cool down in other ways while efforts to cut emissions to zero and draw down carbon dioxide take effect.
Far from causing economic collapse, the challenge of this fundamental change is more likely to be in expanding productive capacity. This will require high levels of economic output and employment, in the service of achieving full-strength ecological sustainability. While those companies that choose not to contribute to this transition will lose out, the economy as a whole will prosper.
The 'new business-as-usual' approach, in failing to understand the severity of the problem and the depth of action required, implements half-measures that will slow, but not stop, the onset of climate catastrophe, and that may worsen the situation. These half-measures usually build on the core competences of our materials-intensive economy, allowing companies to stick closely to what they already know: how to make more and more material goods while using up more and more 'ecological s.p.a.ce'.
Biofuels are a good example of one of these measures. This approach is not ecologically sustainable and cannot deliver the results we need over the medium to long term. As long as the dominant economic players try to solve the climate emergency by using the 'new business-as-usual' paradigm, there will, necessarily, be conflict between them and those adopting a truly sustainable approach.
Can these forces be reconciled? In both approaches, economic growth is a key issue. To the 'new business-as-usual' side, it is a sign of success; to the other side, it is a measure of the rate of ecological destruction. But neither side is necessarily correct.
Setting aside the question of whether economic growth should be a key goal, are there conditions in which economic growth could go on indefinitely, while still being ecologically sustainable? The answer is yes, in the following circ.u.mstances: * when the population is stable and not too large; * when the economy operates with a non-growing (effectively fixed) quant.i.ty of materials, energy, area of land, and water environment; * when the quant.i.ty of materials, energy, and ecological s.p.a.ce is reduced dramatically, compared to the present, in order to provide for the restoration and maintenance of enough quality habitat for all other species and ecosystem services; * when resources are used with the utmost material efficiency; * when energy is renewable, and materials are recycled as close as possible to 100 per cent; and * when chemical intrusions into the environment are reduced to safe levels and do not systematically increase.
These are some of the key requirements for achieving ecological sustainability. Importantly, when the focus is on the qualitative growth of service-value, rather than on pumping out more and more material production, economic growth could continue indefinitely, without clas.h.i.+ng with ecological sustainability. Indeed, this is the model that evolution has worked on for at least the last several hundred million years.
Economic growth is said to be central to economic development, but what actually drives the latter is innovation and invention. Economic growth per se is a red herring.
The more committed a society is to economic growth, the more it must also be committed to fully eliminating its consequent negative environmental impact. A growth economy that ignores the needs for ecological and social sustainability will, in time, destroy its own foundations and, ultimately, collapse.
For the duration of the sustainability emergency, economic innovators and advocates for ecological sustainability must work together to meet human needs and build a path away from climate catastrophe. This essential collaboration must rapidly take a radical new direction, away from the 'new business-as-usual' economy and to an ecologically and socially sustainable safe-climate economy.
CHAPTER 26.
In the End.
If we are serious about creating a safe climate quickly, how much of the world's economic capacity should be devoted to making such a rapid transition? Some economic modellers and policy-makers have been bickering over tenths of a per cent, and fantasising that the world might be able to avoid dangerous climate change while 99 per cent of the economy continues as before.
We can't emphasise strongly enough our view that we must all devote as much of the world's economic capacity as is necessary, as quickly as possible, to this climate emergency. If we do not do enough, and do not do it fast enough, we are likely to create a world in which far fewer species, and a lot less people, will survive. It makes no sense to give high priority to producing yet more 'cream on the cake' when the very viability of the planet, as a life-support system, is at stake.
We are close to blowing the system, as many leading figures are now saying with increasing urgency. At the 2007 Bali conference, UN chief climate negotiator Yvo de Boer said that reducing emissions by 2540 per cent by 2020 would cap global warming to 2 degrees, but that this could still result in 'catastrophic environmental damage'.
It is now or never for truly radical action and heroic leaders.h.i.+p. During the last global mobilisation, the Second World War, more than 30 per cent, and in some cases more than half, of the economy was devoted to military expenditure. As the table below demonstrates, that economic transformation was achieved in a few years: Source: Harrison, M. (2000) The Economics of The Second World War: six great powers in international comparison, Cambridge University Press As a rough estimate, A$300$400 billion invested in renewable energy and energy efficiency in Australia would allow the nation to close every coal-fired electricity generator; it would transform key industries, and the rail and transport system, and provide a just transition for those who might be economically displaced by the changes. Much of that investment in energy efficiency would also be repaid, over time, in energy cost-savings. An investment of that size would be just 34 per cent of total economic production for 10 years, minus the energy savings, which is minuscule compared to the Australian war effort. Is it beyond a developed country's ability to identify 34 per cent of total personal consumption, government expenditure, and corporate activity that could reasonably be re-directed to this necessary task? It seems a very cheap up-front price to pay; and the nation would reap the rewards of this investment forever.
Some will argue that the cost would be even lower, as the McKinsey & Company report on Australia suggested; however, that calculation was based on national emission cuts of 60 per cent by 2050. Dealing with the real emergency, and the scientific imperatives it has unleashed, requires a much steeper and more rapid emissions-reduction curve, along with the introduction of cooling mechanisms. It also requires us to a.s.sist poorer countries which are less responsible for the predicament that the world faces, and less able to respond.
One objection to this vision of a rapid transition to a post-carbon economy is that some power-generating companies may go out of business, undermining one of the great inst.i.tutions of modern life: shareholder value. Through superannuation funds, many of us are shareholders in those electricity generators. But, in reality, some power plants are reaching the end of their antic.i.p.ated life-spans and have already been depreciated. Others that aren't at this point may be compensated. Addressing this effect seems to present a far smaller challenge compared to letting coal-fired power stations, and other users of fossil fuels, wreck the climate. Contrary to a preoccupation with 'shareholder value', we suspect that most citizens would think the greatest 'value' would be a viable future for our planet, our lives, and our children; in other words, that they would welcome an end to the fossil-fuel industries and, in their place, the development of sustainable industries. The chorus of respectable voices, including that of Al Gore, calling for an end to era of coal-fired power generators is growing rapidly.
Really, our main problem is political inertia, not the cost to the economy. It will cost an estimated US$130 billion to ensure that all Indian households enjoy access to electricity by 2030. Let us say that this cost would be doubled if it came from renewable sources. That would be $20 billion a year for 15 years, or around 3 per cent of the annual US military and intelligence budget (including Iraq and Afghanistan), which was US$700 billion in 2007. Just two years of US spending in Iraq and Afghanistan would more than pay the whole bill. So it is not a question of having the money; rather, it is a matter of the choice that we, and our governments, make about where to spend it.
Wherever you look, the story is the same. It is estimated that it might cost an additional US$30 billion per annum to put in place safe-climate power supplies in countries outside the OECD. This would amount to less than 0.1 per cent of the total annual production within OECD countries. Compare that to a world war, during which antagonists devote a third of their economy, and often more, to military spending.
Yet, while every nation on Earth is threatened by catastrophic global warming, most governments are still refusing to act with sufficient speed or financial commitment, exhibiting little courage, foresight, or capacity.
Many of us - in business and at work, in climate-action groups, in the not-for-profit sector, and in political parties - know in our hearts that, in avoiding tackling climate change, these governments are showing poor leaders.h.i.+p, and that the solutions which currently dominate national and global forums are inadequate. Sometimes, though, we dare to imagine that we could mobilise, on a great national and international scale, a very rapid transition to a safe-climate, post-fossil fuel, sustainable way of living.
We now need to imagine such a course of action, because a sustainability emergency is not a radical idea. It has become necessary to save our future.
APPENDIX.
A Climate Code Red Scenario.
An effective way to introduce Climate Code Red to organisations is through a strategic 'planning scenario' that allows people to examine the problems in-depth without prior commitment.
Scenario planning is a method used to examine alternative futures, ranging from those considered the most likely to less likely but significant possibilities. Exploring scenarios helps organisations to respond to change and unexpected events; for example, oil companies might run scenarios that examine the effect on their business of war in a large oil-producing country, or the implications for sales of a global recession.
Scenario planning can identify features of the future that the organisation would like to help bring about, or new activities that position it well across a wide range of futures. It can also help to prepare contingency plans for less likely events or trends.
Scenarios often distinguish between low and high threats, and partial and full responses. A plausible range of responses to a high-level climate threat could be: * failed cooperation (everyone for themselves), in which no real agreement is reached between the most influential players; * the agreement of critical parties on partial measures; and * the timely agreement of critical parties on safe-climate measures (full-strength measures that solve the problem).
A single scenario does not account for all possible futures, but paints a picture that may reasonably occur, based on a set of specific choices or external events. Strategic planners can then explore the dynamics, consequences, problems, and opportunities that arise within the scenario, and examine the merit of different courses of action.
Two key features differentiate our Climate Code Red worldview from other climate-change responses: it considers the climate threat to be larger, and more urgent, than most a.n.a.lysts suggest; and it proposes a full-strength response to achieve a return to a safe climate, rather than merely a slower onset of catastrophe.
Here is one of several scenarios that could be drawn from Climate Code Red.
The scenario trigger One summer, sometime between 2009 and 2013, all the Arctic Ocean sea-ice melts. It then reforms in winter, and completely melts again each summer thereafter, initiating warming that will, in time, cause a rise in regional temperatures of 5 degrees, and a global rise of 0.3 degrees, as light-reflective ice is replace by heat-absorbing dark seas. This causes an accelerated melting of the Greenland ice sheet - which is predicted, along with other factors, to increase global sea levels by up to 5 metres by 2100.
Sea-level rise is exponential, starting slowly and quickening towards the end of the century, so that early solutions are very valuable. The increasing Arctic temperature also accelerates the melting of the permafrost soils, releasing additional large amounts of greenhouse gases, particularly in the second half of the century.
Unless effective action is taken to tackle global warming, the current climate-trajectory already commits the Earth, over the longer term, to a temperature increase, compared to the pre-industrial temperature, of at least 3 degrees. This trajectory includes the fact that: * a rise of 0.8 degrees has already been experienced; * a rise of 0.5 degrees is predicted to occur over the next two decades; and * further warming (which, while taking some time to reach full measure, is already having an effect) is being caused by: * the loss of the Arctic sea-ice (0.3 degrees); * growing emissions from melting permafrost (0.7 degrees); and * air-temperature rises delayed by the warming of the oceans (0.7 degrees).
To these could be added warming from many other causes (including the increased frequency of forest fires), and the declining effectiveness of natural carbon sinks.
If this potential temperature increase were to be realised, there would be catastrophic results for people and for other species.
The possibility Eminent climate scientists have drawn attention to the increasing impact on the climate of positive feedbacks, which reinforce and amplify human-caused global warming in the natural world to produce much greater warming. But it is recognised that the reverse is also true: human actions that result in sustained climate cooling will trigger natural processes that drive further cooling, so that reaching a lower, safe global temperature is made easier. Scientists also suggest that the Arctic ice can be restored to its normal physical extent (as experienced during the past 10,000 years) relatively quickly - over perhaps a couple of decades - if there is modest cooling that returns the polar north to pre-1980 temperatures.
<script>