Part 6 (1/2)

Had Newton done nothing beyond making his wonderful discoveries in light, his fame would have gone down to posterity as one of the greatest of Nature's interpreters. But it was reserved for him to accomplish other discoveries, which have pushed even his a.n.a.lysis of the sunbeam into the background; it is he who has expounded the system of the universe by the discovery of the law of universal gravitation.

The age had indeed become ripe for the advent of the genius of Newton. Kepler had discovered with marvellous penetration the laws which govern the movements of the planets around the sun, and in various directions it had been more or less vaguely felt that the explanation of Kepler's laws, as well as of many other phenomena, must be sought for in connection with the attractive power of matter. But the mathematical a.n.a.lysis which alone could deal with this subject was wanting; it had to be created by Newton.

At Woolsthorpe, in the year 1666, Newton's attention appears to have been concentrated upon the subject of gravitation. Whatever may be the extent to which we accept the more or less mythical story as to how the fall of an apple first directed the attention of the philosopher to the fact that gravitation must extend through s.p.a.ce, it seems, at all events, certain that this is an excellent ill.u.s.tration of the line of reasoning which he followed. He argued in this way. The earth attracts the apple; it would do so, no matter how high might be the tree from which that apple fell. It would then seem to follow that this power which resides in the earth by which it can draw all external bodies towards it, extends far beyond the alt.i.tude of the loftiest tree. Indeed, we seem to find no limit to it. At the greatest elevation that has ever been attained, the attractive power of the earth is still exerted, and though we cannot by any actual experiment reach an alt.i.tude more than a few miles above the earth, yet it is certain that gravitation would extend to elevations far greater. It is plain, thought Newton, that an apple let fall from a point a hundred miles above this earth's surface, would be drawn down by the attraction, and would continually gather fresh velocity until it reached the ground. From a hundred miles it was natural to think of what would happen at a thousand miles, or at hundreds of thousands of miles. No doubt the intensity of the attraction becomes weaker with every increase in the alt.i.tude, but that action would still exist to some extent, however lofty might be the elevation which had been attained.

It then occurred to Newton, that though the moon is at a distance of two hundred and forty thousand miles from the earth, yet the attractive power of the earth must extend to the moon. He was particularly led to think of the moon in this connection, not only because the moon is so much closer to the earth than are any other celestial bodies, but also because the moon is an appendage to the earth, always revolving around it. The moon is certainly attracted to the earth, and yet the moon does not fall down; how is this to be accounted for? The explanation was to be found in the character of the moon's present motion. If the moon were left for a moment at rest, there can be no doubt that the attraction of the earth would begin to draw the lunar globe in towards our globe. In the course of a few days our satellite would come down on the earth with a most fearful crash. This catastrophe is averted by the circ.u.mstance that the moon has a movement of revolution around the earth. Newton was able to calculate from the known laws of mechanics, which he had himself been mainly instrumental in discovering, what the attractive power of the earth must be, so that the moon shall move precisely as we find it to move. It then appeared that the very power which makes an apple fall at the earth's surface is the power which guides the moon in its...o...b..t.

[PLATE: SIR ISAAC NEWTON'S TELESCOPE.]

Once this step had been taken, the whole scheme of the universe might almost be said to have become unrolled before the eye of the philosopher. It was natural to suppose that just as the moon was guided and controlled by the attraction of the earth, so the earth itself, in the course of its great annual progress, should be guided and controlled by the supreme attractive power of the sun. If this were so with regard to the earth, then it would be impossible to doubt that in the same way the movements of the planets could be explained to be consequences of solar attraction.

It was at this point that the great laws of Kepler became especially significant. Kepler had shown how each of the planets revolves in an ellipse around the sun, which is situated on one of the foci. This discovery had been arrived at from the interpretation of observations. Kepler had himself a.s.signed no reason why the orbit of a planet should be an ellipse rather than any other of the infinite number of closed curves which might be traced around the sun. Kepler had also shown, and here again he was merely deducing the results from observation, that when the movements of two planets were compared together, the squares of the periodic times in which each planet revolved were proportional to the cubes of their mean distances from the sun. This also Kepler merely knew to be true as a fact, he gave no demonstration of the reason why nature should have adopted this particular relation between the distance and the periodic time rather than any other. Then, too, there was the law by which Kepler with unparalleled ingenuity, explained the way in which the velocity of a planet varies at the different points of its track, when he showed how the line drawn from the sun to the planet described equal areas around the sun in equal times. These were the materials with which Newton set to work. He proposed to infer from these the actual laws regulating the force by which the sun guides the planets. Here it was that his sublime mathematical genius came into play. Step by step Newton advanced until he had completely accounted for all the phenomena.

In the first place, he showed that as the planet describes equal areas in equal times about the sun, the attractive force which the sun exerts upon it must necessarily be directed in a straight line towards the sun itself. He also demonstrated the converse truth, that whatever be the nature of the force which emanated from a sun, yet so long as that force was directed through the sun's centre, any body which revolved around it must describe equal areas in equal times, and this it must do, whatever be the actual character of the law according to which the intensity of the force varies at different parts of the planet's journey. Thus the first advance was taken in the exposition of the scheme of the universe.

The next step was to determine the law according to which the force thus proved to reside in the sun varied with the distance of the planet. Newton presently showed by a most superb effort of mathematical reasoning, that if the orbit of a planet were an ellipse and if the sun were at one of the foci of that ellipse, the intensity of the attractive force must vary inversely as the square of the planet's distance. If the law had any other expression than the inverse square of the distance, then the orbit which the planet must follow would not be an ellipse; or if an ellipse, it would, at all events, not have the sun in the focus. Hence he was able to show from Kepler's laws alone that the force which guided the planets was an attractive power emanating from the sun, and that the intensity of this attractive power varied with the inverse square of the distance between the two bodies.

These circ.u.mstances being known, it was then easy to show that the last of Kepler's three laws must necessarily follow. If a number of planets were revolving around the sun, then supposing the materials of all these bodies were equally affected by gravitation, it can be demonstrated that the square of the periodic time in which each planet completes its...o...b..t is proportional to the cube of the greatest diameter in that orbit.

[PLATE: SIR ISAAC NEWTON'S ASTROLABE.]

These superb discoveries were, however, but the starting point from which Newton entered on a series of researches, which disclosed many of the profoundest secrets in the scheme of celestial mechanics. His natural insight showed that not only large ma.s.ses like the sun and the earth, and the moon, attract each other, but that every particle in the universe must attract every other particle with a force which varies inversely as the square of the distance between them. If, for example, the two particles were placed twice as far apart, then the intensity of the force which sought to bring them together would be reduced to one-fourth. If two particles, originally ten miles asunder, attracted each other with a certain force, then, when the distance was reduced to one mile, the intensity of the attraction between the two particles would be increased one-hundred-fold. This fertile principle extends throughout the whole of nature. In some cases, however, the calculation of its effect upon the actual problems of nature would be hardly possible, were it not for another discovery which Newton's genius enabled him to accomplish. In the case of two globes like the earth and the moon, we must remember that we are dealing not with particles, but with two mighty ma.s.ses of matter, each composed of innumerable myriads of particles. Every particle in the earth does attract every particle in the moon with a force which varies inversely as the square of their distance. The calculation of such attractions is rendered feasible by the following principle. a.s.suming that the earth consists of materials symmetrically arranged in sh.e.l.ls of varying densities, we may then, in calculating its attraction, regard the whole ma.s.s of the globe as concentrated at its centre. Similarly we may regard the moon as concentrated at the centre of its ma.s.s. In this way the earth and the moon can both be regarded as particles in point of size, each particle having, however, the entire ma.s.s of the corresponding globe. The attraction of one particle for another is a much more simple matter to investigate than the attraction of the myriad different points of the earth upon the myriad different points of the moon.

Many great discoveries now crowded in upon Newton. He first of all gave the explanation of the tides that ebb and flow around our sh.o.r.es. Even in the earliest times the tides had been shown to be related to the moon. It was noticed that the tides were specially high during full moon or during new moon, and this circ.u.mstance obviously pointed to the existence of some connection between the moon and these movements of the water, though as to what that connection was no one had any accurate conception until Newton announced the law of gravitation. Newton then made it plain that the rise and fall of the water was simply a consequence of the attractive power which the moon exerted upon the oceans lying upon our globe. He showed also that to a certain extent the sun produces tides, and he was able to explain how it was that when the sun and the moon both conspire, the joint result was to produce especially high tides, which we call ”spring tides”; whereas if the solar tide was low, while the lunar tide was high, then we had the phenomenon of ”neap”

tides.

But perhaps the most signal of Newton's applications of the law of gravitation was connected with certain irregularities in the movements of the moon. In its...o...b..t round the earth our satellite is, of course, mainly guided by the great attraction of our globe. If there were no other body in the universe, then the centre of the moon must necessarily perform an ellipse, and the centre of the earth would lie in the focus of that ellipse. Nature, however, does not allow the movements to possess the simplicity which this arrangement would imply, for the sun is present as a source of disturbance. The sun attracts the moon, and the sun attracts the earth, but in different degrees, and the consequence is that the moon's movement with regard to the earth is seriously affected by the influence of the sun. It is not allowed to move exactly in an ellipse, nor is the earth exactly in the focus. How great was Newton's achievement in the solution of this problem will be appreciated if we realise that he not only had to determine from the law of gravitation the nature of the disturbance of the moon, but he had actually to construct the mathematical tools by which alone such calculations could be effected.

The resources of Newton's genius seemed, however, to prove equal to almost any demand that could be made upon it. He saw that each planet must disturb the other, and in that way he was able to render a satisfactory account of certain phenomena which had perplexed all preceding investigators. That mysterious movement by which the pole of the earth sways about among the stars had been long an unsolved enigma, but Newton showed that the moon grasped with its attraction the protuberant ma.s.s at the equatorial regions of the earth, and thus tilted the earth's axis in a way that accounted for the phenomenon which had been known but had never been explained for two thousand years. All these discoveries were brought together in that immortal work, Newton's ”Principia.”

Down to the year 1687, when the ”Principia” was published, Newton had lived the life of a recluse at Cambridge, being entirely occupied with those transcendent researches to which we have referred. But in that year he issued from his seclusion under circ.u.mstances of considerable historical interest. King James the Second attempted an invasion of the rights and privileges of the University of Cambridge by issuing a command that Father Francis, a Benedictine monk, should be received as a Master of Arts in the University, without having taken the oaths of allegiance and supremacy. With this arbitrary command the University sternly refused to comply. The Vice-Chancellor was accordingly summoned to answer for an act of contempt to the authority of the Crown. Newton was one of nine delegates who were chosen to defend the independence of the University before the High Court.

They were able to show that Charles the Second, who had issued a MANDAMUS under somewhat similar circ.u.mstances, had been induced after due consideration to withdraw it. This argument appeared satisfactory, and the University gained their case. Newton's next step in public life was his election, by a narrow majority, as member for the University, and during the years 1688 and 1689, he seems to have attended to his parliamentary duties with considerable regularity.

An incident which happened in 1692 was apparently the cause of considerable disturbance in Newton's equanimity, if not in his health. He had gone to early morning chapel, leaving a lighted candle among his papers on his desk. Tradition a.s.serts that his little dog ”Diamond” upset the candle; at all events, when Newton came back he found that many valuable papers had perished in a conflagration. The loss of these ma.n.u.scripts seems to have had a serious effect. Indeed, it has been a.s.serted that the distress reduced Newton to a state of mental aberration for a considerable time. This has, apparently, not been confirmed, but there is no doubt that he experienced considerable disquiet, for in writing on September 13th, 1693, to Mr. Pepys, he says:

”I am extremely troubled at the embroilment I am in, and have neither ate nor slept well this twelve-month, nor have my former consistency of mind.”

Notwithstanding the fame which Newton had achieved, by the publication of his, ”Principia,” and by all his researches, the State had not as yet taken any notice whatever of the most ill.u.s.trious man of science that this or any other country has ever produced. Many of his friends had exerted themselves to procure him some permanent appointment, but without success. It happened, however, that Mr.

Montagu, who had sat with Newton in Parliament, was appointed Chancellor of the Exchequer in 1694. Ambitious of distinction in his new office, Mr. Montagu addressed himself to the improvement of the current coin, which was then in a very debased condition. It fortunately happened that an opportunity occurred of appointing a new official in the Mint; and Mr. Montagu on the 19th of March, 1695, wrote to offer Mr. Newton the position of warden. The salary was to be five or six hundred a year, and the business would not require more attendance than Newton could spare. The Lucasian professor accepted this post, and forthwith entered upon his new duties.

The knowledge of physics which Newton had acquired by his experiments was of much use in connection with his duties at the Mint. He carried out the re-coinage with great skill in the course of two years, and as a reward for his exertions, he was appointed, in 1697, to the Masters.h.i.+p of the Mint, with a salary between 1,200 Pounds and 1,500 Pounds per annum. In 1701, his duties at the Mint being so engrossing, he resigned his Lucasian professors.h.i.+p at Cambridge, and at the same time he had to surrender his fellows.h.i.+p at Trinity College. This closed his connection with the University of Cambridge. It should, however, be remarked that at a somewhat earlier stage in his career he was very nearly being appointed to an office which might have enabled the University to retain the great philosopher within its precincts. Some of his friends had almost succeeded in securing his nomination to the Provosts.h.i.+p of King's College, Cambridge; the appointment, however, fell through, inasmuch as the statute could not be evaded, which required that the Provost of King's College should be in holy orders.

In those days it was often the custom for ill.u.s.trious mathematicians, when they had discovered a solution for some new and striking problem, to publish that problem as a challenge to the world, while withholding their own solution. A famous instance of this is found in what is known as the Brachistochrone problem, which was solved by John Bernouilli. The nature of this problem may be mentioned. It was to find the shape of the curve along which a body would slide down from one point (A) to another point (B) in the shortest time. It might at first be thought that the straight line from A to B, as it is undoubtedly the shortest distance between the points, would also be the path of quickest descent; but this is not so. There is a curved line, down which a bead, let us say, would run on a smooth wire from A to B in a shorter time than the same bead would require to run down the straight wire. Bernouilli's problem was to find out what that curve must be. Newton solved it correctly; he showed that the curve was a part of what is termed a cycloid--that is to say, a curve like that which is described by a point on the rim of a carriage-wheel as the wheel runs along the ground. Such was Newton's geometrical insight that he was able to transmit a solution of the problem on the day after he had received it, to the President of the Royal Society.

In 1703 Newton, whose world wide fame was now established, was elected President of the Royal Society. Year after year he was re-elected to this distinguished position, and his tenure, which lasted twenty-five years, only terminated with his life. It was in discharge of his duties as President of the Royal Society that Newton was brought into contact with Prince George of Denmark. In April, 1705, the Queen paid a visit to Cambridge as the guest of Dr.

Bentley, the then Master of Trinity, and in a court held at Trinity Lodge on April 15th, 1705, the honour of knighthood was conferred upon the discoverer of gravitation.

Urged by ill.u.s.trious friends, who sought the promotion of knowledge, Newton gave his attention to the publication of a new edition of the ”Principia.” His duties at the Mint, however, added to the supreme duty of carrying on his original investigations, left him but little time for the more ordinary task of the revision. He was accordingly induced to a.s.sociate with himself for this purpose a distinguished young mathematician, Roger Coates, a Fellow of Trinity College, Cambridge, who had recently been appointed Plumian Professor of Astronomy. On July 27th, 1713, Newton, by this time a favourite at Court, waited on the Queen, and presented her with a copy of the new edition of the ”Principia.”