Part 10 (1/2)
There is another practice followed by the Chinese, connected with the formation of nitrates in soils, which again emphasizes the national trait of saving and turning to use any and every thing worth while. Our attention was called to this practice by Rev. A. E.
Evans of Shunking, Szechwan province. It rests upon the tendency of the earth floors of dwellings to become heavily charged with calcium nitrate through the natural processes of nitrification. Calcium nitrate being deliquescent absorbs moisture sufficiently to dissolve and make the floor wet and sticky. Dr. Evans' attention was drawn to the wet floor in his own house, which be at first ascribed to insufficient ventilation, but which be was unable to remedy by improving that. The father of one of his a.s.sistants, whose business consisted in purchasing the soil of such floors for producing pota.s.sium nitrate, used so much in China in the manufacture of fireworks and gunpowder, explained his difficulty and suggested the remedy.
This man goes from house to house through the village, purchasing the soil of floors which have thus become overcharged. He procures a sample, tests it and announces what he will pay for the surface two, three or four inches, the price sometimes being as high as fifty cents for the privilege of removing the top layer of the floor, which the proprietors must replace. He leaches the soil removed, to recover the calcium nitrate, and then pours the leachings through plant ashes containing pota.s.sium carbonate, for the purpose of transforming the calcium nitrate into the pota.s.sium nitrate or saltpeter. Dr. Evans learned that during the four months preceding our interview this man had produced sufficient pota.s.sium nitrate to bring his sales up to $80, Mexican. It was necessary for him to make a two-days journey to market his product. In addition he paid a license fee of 80 cents per month. He must purchase his fuel ashes and hire the services of two men.
When the nitrates which acc.u.mulate in the floors of dwellings are not collected for this purpose the soil goes to the fields to be used directly as a fertilizer, or it may be worked into compost. In the course of time the earth used in the village walls and even in the construction of the houses may disintegrate so as to require removal, but in all such cases, as with the earth brick used in the kangs, the value of the soil has improved for composting and is generally so used. This improvement of the soil will not appear strange when it is stated that such materials are usually from the subsoil, whose physical condition would improve when exposed to the weather, converting it in fact into an uncropped virgin soil.
We were unable to secure definite data as to the chemical composition of these composts and cannot say what amounts of available plant food the Shantung farmers are annually returning to their fields. There can be little doubt, however, that the amounts are quite equal to those removed by the crops. The soils appeared well supplied with organic matter and the color of the foliage and the general aspect of crops indicated good feeding.
The family with whom we talked in the village place their usual yields of wheat at 420 catty of grain and 1000 catty of straw per mow,--their mow was four-thirds of the legal standard mow--the grain being worth 35 strings of cash and the straw 12 to 14 strings, a string of cash being 40 cents, Mexican, at this time. Their yields of beans were such as to give them a return of 30 strings of cash for the grain and 8 to 10 strings for the straw. Small millet usually yielded 450 catty of grain, worth 25 strings of cash, per mow, and 800 catty of straw worth 10 to 11 strings of cash; while the yields of large millet they placed at 400 catty per mow, worth 25 strings of cash, and 1000 catty of straw worth 12 to 14 strings of cash. Stating these amounts in bushels per acre and in our currency, the yield of wheat was 42 bushels of grain and 6000 pounds of straw per acre, having a cash value of $27.09 for the grain and $10.06 for the straw. The soy bean crop follows the wheat, giving an additional return of $23.22 for the beans and $6.97 for the straw, making the gross earning for the two crops $67.34 per acre. The yield of small millet was 54 bushels of seed and 4800 pounds of straw per acre, worth $27.09 and $8.12 for seed and straw respectively, while the kaoliang or large millet gave a yield of 48 bushels of grain and 6000 pounds of stalks per acre, worth $19.35 for the grain, and $10.06 for the straw.
A crop of wheat like the one stated, if no part of the plant food contained in the grain or straw were returned to the field, would deplete the soil to the extent of about 90 pounds of nitrogen, 15 pounds of phosphorus and 65 pounds of pota.s.sium; and the crop of soy beans, if it also were entirely removed, would reduce these three plant food elements in the soil to the extent of about 240 pounds of nitrogen, 33 pounds of phosphorus and 102 pounds of pota.s.sium, on the basis of 45 bushels of beans and 5400 pounds of stems and leaves per acre, a.s.suming that the beans added no nitrogen to the soil, which is of course not true. This household of farmers, therefore, in order to have maintained this producing power in their soil, have been compelled to return to it annually, in one form or another, not less than 48 pounds of phosphorus and 167 pounds of pota.s.sium per acre. The 330 pounds of nitrogen they would have to return in the form of organic matter or acc.u.mulate it from the atmosphere, through the instrumentality of their soy bean crop or some other legume. It has already been stated that they do add more than 5000 to 7000 pounds of dry compost, which, repeated for a second crop, would make an annual application of five to seven tons of dry compost per acre annually. They do use, in addition to this compost, large amounts of bean and peanut cake, which carry all of the plant food elements derived from the soil which are contained in the beans and the peanuts. If the vines are fed, or if the stems of the beaus are burned for fuel, most of the plant food elements in these will be returned to the field, and they have doubtless learned how to completely restore the plant food elements removed by their crops, and persistently do so.
The roads made by the Germans in the vicinity of Tsingtao enabled us to travel by ricksha into the adjoining country, and on one such trip we visited a village mill for grinding soy beans and peanuts in the manufacture of oil, and Fig. 136 shows the stone roller, four feet in diameter and two feet thick, which is revolved about a vertical axis on a circular stone plate, drawn by a donkey, crus.h.i.+ng the kernels partly by its weight and partly by a twisting motion, for the arm upon which the roller revolves is very short. After the meal had been ground the oil was expressed in essentially the same way as that described for the cotton seed, but the bean and peanut cakes are made much larger than the cotton seed cakes, about eighteen inches in diameter and three to four inches thick. Two of these cakes are seen in Fig. 137, standing on edge outside the mill in an orderly clean court. It is in this form that bean cake is exported in large quant.i.ties to different parts of China, and to j.a.pan in recent years, for use as fertilizer, and very recently it is being s.h.i.+pped to Europe for both stock food and fertilizer.
Nowhere in this province, nor further north, did we see the large terra cotta, receptacles so extensively used in the south for storing human excreta. In these dryer climates some method of desiccation is practiced and we found the gardeners in the vicinity of Tsingtao with quant.i.ties of the fertilizer stacked under matting shelters in the desiccated condition, this being finely pulverized in one or another way before it was applied. The next ill.u.s.tration, Fig. 138, shows one of these piles being fitted for the garden, its thatched shelter standing behind the grandfather of a household. His grandson was carrying the prepared fertilizer to the garden area seen in Fig. 139, where the father was working it into the soil. The greatest pains is taken, both in reducing the product to a fine powder and in spreading and incorporating it with the soil, for one of their maxims of soil management is to make each square foot of field or garden the equal of every other in its power to produce. In this manner each little holding is made to yield the highest returns possible under the conditions the husbandman is able to control.
From one portion of the area being fitted, a crop of artemisia had been harvested, giving a gross return at the rate of $73.19 per acre, and from another leeks had been taken, bringing a gross return of $43.86 per acre. Chinese celery was the crop for which the ground was being fitted.
The application of soil as a fertilizer to the fields of China, whether derived from the subsoil or from the silts and organic matter of ca.n.a.ls and rivers, must have played an important part in the permanency of agriculture in the Far East, for all such additions have been positive accretions to the effective soil, increasing its depth and carrying to it all plant food elements. If not more than one-half of the weight of compost applied to the fields of Shantung is highly fertilized soil, the rates of application observed would, in a thousand years, add more than two million pounds per acre, and this represents about the volume of soil we turn with the plow in our ordinary tillage operations, and this amount of good soil may carry more than 6000 pounds of nitrogen, 2000 pounds of phosphorus and more than 60,000 pounds of pota.s.sium.
When we left our hotel by ricksha for the steamer, returning to Shanghai, we soon observed a boy of thirteen or fourteen years apparently following, sometimes a little ahead, sometimes behind, usually keeping the sidewalk but slackening his pace whenever the ricksha man came to a walk. It was a full mile to the wharf. The boy evidently knew the sailing schedule and judged by the valise in front, that we were to take the out-going steamer and that he might possibly earn two cents, Mexican, the usual fee for taking a valise aboard the steamer. Twenty men at the wharf might be waiting for the job, but he was taking the chance with the mile down and back thrown in, and all for less than one cent in our currency, equivalent at the time to about twenty ”cash”. As we neared the steamer the lad closed up behind but strong and eager men were watching. Twice he was roughly thrust aside and before the ricksha stopped a man of stalwart frame seized the valise and, had we not observed the boy thus un.o.btrusively entering the compet.i.tion, he would have had only his trouble for his pains. Thus intense was the struggle here for existence and thus did a mere lad put himself effectively into it.
True to breeding and example he had spared no labor to win and was surprised but grateful to receive more than he had expected.
XI
ORIENTALS CROWD BOTH TIME AND s.p.a.cE
Time is a function of every life process, as it is of every physical, chemical and mental reaction, and the husbandman is compelled to shape his operations so as to conform with the time requirements of his crops. The oriental farmer is a time economizer beyond any other. He utilizes the first and last minute and all that are between. The foreigner accuses the Chinaman of being always ”long on time”, never in a fret, never in a hurry. And why should he be when he leads time by the forelock, and uses all there is?
The customs and practices of these Farthest East people regarding their manufacture of fertilizers in the form of earth composts for their fields, and their use of altered subsoils which have served in their kangs, village walls and dwellings, are all instances where they profoundly shorten the time required in the field to affect the necessary chemical, physical and biological reactions which produce from them plant food substances. Not only do they thus increase their time a.s.sets, but they add, in effect, to their land area by producing these changes outside their fields, at the same time giving their crops the immediately active soil products.
Their compost practices have been of the greatest consequence to them, both in their extremely wet, rice-culture methods, and in their ”dry-farming” practices, where the soil moisture is too scanty during long periods to permit rapid fermentation under field conditions. Western agriculturalists have not sufficiently appreciated the fact that the most rapid growth of plant food substances in the soil cannot occur at the same time and place with the most rapid crop increase, because both processes draw upon the available soil moisture, soil air and soluble pota.s.sium, calcium, phosphorus and nitrogen compounds. Whether this fundamental principle of practical agriculture is written in their literature or not it is most indelibly fixed in their practice. If we and they can perpetuate the essentials of this practice at a large saving of human effort, or perpetually secure the final result in some more expeditious and less laborious way, most important progress will have been made.
When we went north to the Shantung province the Kiangsu and Chekiang farmers were engaged in another of their time saving practices, also involving a large amount of human labor. This was the planting of cotton in wheat fields before the wheat was quite ready to harvest.
In the sections of these two provinces which we visited most of the wheat and barley were sowed broadcast on narrow raised lands, some five feet wide, with furrows between, after the manner seen in Fig.
140, showing a reservoir in the immediate foreground, on whose bank is installed one of the four-man foot-power irrigation pumps in use to flood the nursery rice bed close by on the right. The narrow lands of broadcasted wheat extend back from the reservoir toward the farmsteads which dot the landscape, and on the left stands one of the pump shelters near the ca.n.a.l bank.
To save time, or lengthen the growing season of the cotton which was to follow, this seed was sown broadcast among the grain on the surface, some ten to fifteen days before the wheat would be harvested. To cover the seed the soil in the furrows between the beds had been spaded loose to a depth of four or five inches, finely pulverized, and then with a spade was evenly scattered over the bed, letting it sift down among the grain, covering the seed. This loose earth, so applied, acts as a mulch to conserve the capillary moisture, permitting the soil to become sufficiently damp to germinate the seed before the wheat is harvested. The next ill.u.s.tration, Fig. 141, is a closer view with our interpreter standing in another field of wheat in which cotton was being sowed April 22nd in the manner described, and yet the stand of grain was very close and shoulder high, making it not an easy task either to sow the seed or to scatter sufficient soil to cover it.
When we had returned from Shantung this piece of grain had been harvested, giving a yield of 95.6 bushels of wheat and 3.5 tons of straw per acre, computed from the statement of the owner that 400 catty of grain and 500 catty of straw had been taken from the beds measuring 4050 square feet. On the morning of May 29th the photograph for Fig. 142 was taken, showing the same area after the wheat had been harvested and the cotton was up, the young plants showing slightly through the short stubble. These beds had already been once treated with liquid fertilizer. A little later the plants would be hoed and thinned to a stand of about one plant per each square foot of surface. There were thirty-seven days between the taking of the two photographs, and certainly thirty days had been added to the cotton crop by this method of planting, over what would have been available if the grain had been first harvested and the field fitted before planting, It will be observed that the cotton follows the wheat without plowing, but the soil was deep, naturally open, and a layer of nearly two inches of loose earth had been placed over the seed at the time of planting. Besides, the ground would be deeply worked with the two or four tined hoe, at the time of thinning.