Part 12 (1/2)

Sir H. Davy's letter was as follows:--

”SIR,

”I am far from displeased with the proof you have given me of your confidence, and which displays great zeal, power of memory, and attention. I am obliged to go out of town, and shall not be settled in town till the end of January; I will then see you at any time you wish. It would gratify me to be of any service to you; I wish it may be in my power.

”I am, sir, ”Your obedient humble servant, ”H. DAVY.”

The minutes of the meeting of managers of the Royal Inst.i.tution, on March 1, 1813, contain the following entry:--”Sir Humphry Davy has the honour to inform the managers that he has found a person who is desirous to occupy the situation in the inst.i.tution lately filled by William Payne. His name is Michael Faraday. He is a youth of twenty-two years of age. His habits seem good, his disposition active and cheerful, and his manner intelligent. He is willing to engage himself on the same terms as those given to Mr. Payne at the time of quitting the inst.i.tution.

”Resolved, that Michael Faraday be engaged to fill the situation lately occupied by Mr. Payne, on the same terms.”

About this time Faraday joined the City Philosophical Society, which had been started at Mr. Tatum's house in 1808. The members met every Wednesday evening, either for a lecture or discussion; and perhaps the society did not widely differ from some of the ”students'

a.s.sociations” which have more recently been started in connection with other educational enterprises. Magrath was secretary of this society, and from it there sprang a smaller band of students, who, meeting once a week, either at Magrath's warehouse in Wood Street, or at Faraday's private rooms in the attics of the Royal Inst.i.tution, for mutual improvement, read together, and freely criticized each other's p.r.o.nunciation and composition. In a letter to Abbott six weeks after commencing work at the Royal Inst.i.tution, Faraday says:--

A stranger would certainly think you and I were a couple of very simple beings, since we find it necessary to write to each other, though we so often personally meet; but the stranger would, in so judging, only fall into that error which envelops all those who decide from the outward appearances of things....

When writing to you I seek that opportunity of striving to describe a circ.u.mstance or an experiment clearly; so that you will see I am urged on by selfish motives partly to our mutual correspondence, but, though selfish, yet not censurable.

During the summer of 1813 Faraday, in his letters to Abbott, gave his friend the benefit of his experience ”on the subject of lectures and lecturers in general,” in a manner that speaks very highly of his power of observation of men as well as things. He was of opinion that a lecture should not last more than an hour, and that the subject should ”fit the audience.”

”A lecturer may consider his audience as being polite or vulgar (terms I wish you to understand according to Shuffleton's new dictionary), learned or unlearned (with respect to the subject), listeners or gazers. Polite company expect to be entertained, not only by the subject of the lecture, but by the manner of the lecturer; they look for respect, for language consonant to their dignity, and ideas on a level with their own. The vulgar--that is to say, in general, those who will take the trouble of thinking, and the bees of business--wish for something that they can comprehend. This may be deep and elaborate for the learned, but for those who are as yet tyros and unacquainted with the subject, must be simple and plain. Lastly, listeners expect reason and sense, whilst gazers only require a succession of words.”

In favour of experimental ill.u.s.tration he says:--

”I need not point out ... the difference in the perceptive powers of the eye and the ear, and the facility and clearness with which the first of these organs conveys ideas to the mind--ideas which, being thus gained, are held far more retentively and firmly in the memory than when introduced by the ear.... Apparatus, therefore, is an essential part of every lecture in which it can be introduced.... When ... apparatus is to be exhibited, some kind of order should be observed in the arrangement of them on the lecture-table. Every particular part ill.u.s.trative of the lecture should be in view, no one thing should hide another from the audience, nor should anything stand in the way of or obstruct the lecturer. They should be so placed, too, as to produce a kind of uniformity in appearance. No one part should appear naked and another crowded, unless some particular reason exists and makes it necessary to be so.”

On October 13, 1813, Faraday left the Royal Inst.i.tution, in order to accompany Sir Humphry Davy in a tour on the Continent. His journal gives some interesting details, showing the inconveniences of foreign travel at that time. Sir Humphry Davy took his carriage with him in pieces, and these had to be put together after escaping the dangers of the French custom-house on the quay at Morlaix, two years before the battle of Waterloo.

One apparently trivial incident somewhat marred Faraday's pleasure throughout this journey. It was originally intended that the party should comprise Sir Humphry and Lady Davy, Faraday, and Sir Humphry's valet, but at the last moment that most important functionary declined to leave his native sh.o.r.es. Davy then requested Faraday to undertake such of the duties of valet as were essential to the well-being of the party, promising to secure the services of a suitable person in Paris.

But no eligible candidate appeared for the appointment, and thus Faraday had throughout to take charge of domestic affairs as well as to a.s.sist in experiments. Had there been only Sir Humphry and himself, this would have been no hards.h.i.+p. Sir Humphry had been accustomed to humble life in his early days; but the case was different with his lady, and, apparently, Faraday was more than once on the point of leaving his patron and returning home alone. A circ.u.mstance which occurred at Geneva ill.u.s.trates the position of affairs. Professor E.

de la Rive invited Sir Humphry and Lady Davy and Faraday to dinner.

Sir Humphry could not go into society with one who, in some respects, acted as his valet. When this point was represented to the professor, he replied that he was sorry, as it would necessitate his giving another dinner-party. Faraday subsequently kept up a correspondence with De la Rive, and continued it with his son. In writing to the latter he says, in speaking of Professor E. de la Rive, that he was ”the first who personally at Geneva, and afterwards by correspondence, encouraged and by that sustained me.”

At Paris Faraday met many of the most distinguished men of science of the time. One morning Ampere, Clement, and Desormes called on Davy, to show him some iodine, a substance which had been discovered only about two years before, and Davy, while in Paris, and afterwards at Montpellier, executed a series of experiments upon it. After three months' stay, the party left Paris for Italy, _via_ Montpellier, Aix, and Nice, whence they crossed the Col de Tende to Turin. The transfer of the carriage and baggage across the Alps was effected by a party of sixty-five men, with sledges and a number of mules. The description of the journey, as recorded in Faraday's diary, makes us respect the courage of an Englishman who, in the early part of this century, would attempt the conveyance of a carriage across the Alps in the winter.

”From Turin we proceeded to Genoa, which place we left afterwards in an open boat, and proceeded by sea towards Lerici. This place we reached after a very disagreeable pa.s.sage, and not without apprehensions of being overset by the way. As there was nothing there very enticing, we continued our route to Florence; and, after a stay of three weeks or a month, left that fine city, and in four days arrived here at Rome.” The foregoing is from Faraday's letter to his mother. At Florence a good deal of time was spent in the Academia del Cimento. Here Faraday saw the telescope with which Galileo discovered Jupiter's satellites, with its tube of wood and paper about three feet and a half long, and simple object-gla.s.s and eye-gla.s.s. A red velvet electric machine with a rubber of gold paper, Leyden jars pierced by the discharge between their armatures, the first lens constructed by Galileo, and a number of other objects, were full of interest to the recently enfranchised bookbinder's apprentice; but it was the great burning-gla.s.s of the grand-duke which was the most serviceable of all the treasures of the museum. With this gla.s.s--which consisted of two convex lenses about three feet six inches apart, the first lens having a diameter of about fourteen or fifteen inches, and the second a diameter of three inches--Davy succeeded in burning several diamonds in oxygen gas, and in proving that the diamond consists of little else than carbon. In 1818 Faraday published a paper on this subject in the _Quarterly Journal of Science_. At Genoa some experiments were made with the torpedo, but the specimens caught were very small and weak, and their shocks so feeble that no definite results were obtained. At Rome Davy attempted to repeat an experiment of Signor Morrichini, whereby a steel needle was magnetized by causing the concentrated violet and blue rays from the sun to traverse the needle from the middle to the north end several times. The experiment did not succeed in the hands of Davy and Faraday, and it was left to the latter to discover a relation between magnetism and light. From Rome they visited Naples and ascended Vesuvius, and shortly afterwards left Italy for Geneva. In the autumn of 1814 they returned from Switzerland through Germany, visiting Berne, Zurich, the Tyrol, Padua, Venice, and Bologne, to Florence, where Davy again carried out some chemical investigations in the laboratory of the academy. Thence they returned to Rome, and in the spring went on to Naples, and again visited Vesuvius, returning to England in April, _via_ Rome, the Tyrol, Stuttgart, Brussels, and Ostend.

A fortnight after his return from the Continent Faraday was again a.s.sistant at the Royal Inst.i.tution, but with a salary of thirty s.h.i.+llings a week. His character will be sufficiently evident from the quotations which have been given from his diary and letters.

Henceforth we must be mainly occupied with the consideration of his scientific work.

In January, 1816, he gave his first lecture to the City Philosophical Society. In a lecture delivered shortly afterwards before the same society, the following pa.s.sage, which gives an idea of one of the current beliefs of the time, occurs:--

”The conclusion that is now generally received appears to be that light consists of minute atoms of matter of an octahedral form, possessing polarity, and varying in size or in velocity....

”If now we conceive a change as far beyond vaporization as that is above fluidity, and then take into account also the proportional increased extent of alteration as the changes rise, we shall, perhaps, if we can form any conception at all, not fall far short of radiant matter;[6] and as in the last conversion many qualities were lost, so here also many more would disappear.

[Footnote 6: Not Crookes's.]

”It was the opinion of Newton, and of many other distinguished philosophers, that this conversion was possible, and continually going on in the processes of nature, and they found that the idea would bear without injury the application of mathematical reasoning--as regards heat, for instance. If a.s.sumed, we must also a.s.sume the simplicity of matter; for it would follow that all the variety of substances with which we are acquainted could be converted into one of three kinds of radiant matter, which again may differ from one another only in the size of their particles or their form. The properties of known bodies would then be supposed to arise from the varied arrangements of their ultimate atoms, and belong to substances only as long as their compound nature existed; and thus variety of matter and variety of properties would be found co-essential. The simplicity of such a system is singularly beautiful, the idea grand and worthy of Newton's approbation. It was what the ancients believed, and it may be what a future race will realize.”

In the closing words of his fifth lecture to the City Philosophical Society, Faraday said:--

”The philosopher should be a man willing to listen to every suggestion, but determined to judge for himself. He should not be bia.s.sed by any appearances; have no favourite hypothesis; be of no school; and in doctrine have no master. He should not be a respecter of persons, but of things. Truth should be his primary object. If to these qualities be added industry, he may indeed hope to walk within the veil of the temple of nature.”