Part 1 (2/2)
These park-goers have plenty of company. Disney's own exit polls reveal long lines as the top source of customer unhappiness. Industry veterans say the average guest dawdles away three to four hours in queues during a visit lasting eight to nine hours; that's one minute of standing around out of every two to three minutes inside the park! Amus.e.m.e.nt Business Amus.e.m.e.nt Business estimated that the national average for wait time at major attractions in a theme park during the summer was sixty minutes-after which patrons get to spend two minutes on the ride. Since a family of four can spend $1,000 or more in a single trip, it is no wonder why some guests are irritated by seemingly interminable lines. estimated that the national average for wait time at major attractions in a theme park during the summer was sixty minutes-after which patrons get to spend two minutes on the ride. Since a family of four can spend $1,000 or more in a single trip, it is no wonder why some guests are irritated by seemingly interminable lines.
These trip reports leave vivid images of heroic maneuvers to avoid lines. A suitable att.i.tude is required: ”When I'm in the parks, I'm a Daddy on a mission. . . . In the course of the afternoon, I'll go from one end of the park to the other and ride more rides, wait less in lines, and see more shows and parades than many other park patrons, with or without kids.”
So are small sacrifices . . .
”We manage to avoid long lines with an occasional early morning, and hitting popular attractions during parades, mealtimes, and late evenings.”
. . . and knowing how to play the system . . .
”The mother behind me told me that they had waited three hours to ride Dumbo during their last visit. [This time,] she took advantage of early admission to let her kid ride three times in a row with no waiting.”
. . . and sweet-talking teachers into granting special permission . . .
”Taking your kids out of school [to go to Disney]. Is it worth it? Yes!”
. . . and spotting opportunities that others give . . .
”It does rain in Florida, especially during summer afternoons. The good news is that this tends to scare off some people. My advice: Buy bright-yellow ponchos for $5 each from any of the gift shops. Then keep those kids walking.”
. . . while always adapting tactics: ”We are starting to think that reverse-reverse psychology might work: Disney opens one park earlier for all their guests so all the guests go to that park. . . . [Everyone else avoids that park, and] therefore we can go to that park because people think it is going to be packed and they avoid it.”
Queues happen when demand exceeds capacity. Most large rides can accommodate 1,000 to 2,000 guests per hour; lines form if patrons arrive at a higher rate. If Disney accurately antic.i.p.ated demand, could it not build sufficient capacity? Did the appearance of long lines reflect negligent design? Surprisingly, the answer to both questions is no. The real culprit is not bad design but variability variability. Disney constructs each theme park to satisfy the ”design day,” typically up to the ninetieth-percentile level of demand, which means, in theory, on nine out of ten days, the park should have leftover capacity. In reality, patrons report long lines pretty much any day of the year.
Worse, statisticians are certain that queues would persist even if Disney had designed for the busiest day of the year. To understand this piece of anti-intuition, we must realize that the busiest-day demand merely conveys the average park attendance, and this number ignores the uneven distribution of patrons, say, from one attraction to another or from one hour to the next. Even if Disney correctly predicted the total number of patrons riding Dumbo on the peak day (which itself would have been a tough a.s.signment), a line would materialize unavoidably because the patrons would appear irregularly during the day, while Dumbo's capacity does not change. Statisticians tell us that it is the variable pattern of when guests arrive, not the average number of arrivals, that produces queues on all but the peak days. Capacity planning can cope with large and static demand, not fluctuating demand. (A theme park that guarantees no lines would require capacity wildly disproportionate to demand, ensuring substantial idle time and unviable economics.) The engineers who figured out these secrets are hailed as heroes by the Disney die-hards, and they work for the Imagineering division, based in several nondescript buildings in Glendale, California, near Los Angeles. They also design new rides, handling not only the thrill factor but also operations management. In the realm of waiting lines, scientists rely heavily on computer simulations as the mathematics of queuing are super complex and frequently irreducible to neat formulas. Think of simulations as turbocharged what-if a.n.a.lyses, run by farms of computers. Thousands, perhaps millions, of scenarios are investigated, covering possible patterns of arrival and subsequent movement of guests around the park. The summary of these scenarios yields reams of statistics, such as the likelihood that the Dumbo ride will reach 95 percent of its capacity on any given day. This creative approach to working around intractable mathematical problems was invented by the Manhattan Project team while building the atomic bomb and also forms the basis of Moneyball Moneyball statistics featured in Michael Lewis's account of how the Oakland Athletics outwitted powerhouse baseball teams with much bigger budgets. statistics featured in Michael Lewis's account of how the Oakland Athletics outwitted powerhouse baseball teams with much bigger budgets.
Wouldn't you know it? The same script plays itself out on our highways: the bane of commuters is not so much long average trip time as it is variable trip time. The statistics paint a harsh reality indeed: the average American worker spent 25.5 minutes traveling to work in 2006, and in addition, more than ten million people endured commutes of over an hour. In total, traffic delays cost $63 billion a year while wasting 2.3 billion gallons of fuel. But these scary numbers miss the mark. Just ask the pileup of readers who sent grievances to Minneapolis Star Tribune Minneapolis Star Tribune. Those truly put off by a long trip to work every day either practice avoidance . . .
”I chose to live in Minneapolis for transportation-related reasons: great access to transit and reverse commutes. . . . If people chose to live in Eden Prairie [an edge city southwest of Minneapolis], then I don't have much sympathy for their complaints about traffic problems.”
. . . or have made peace with the inevitable: ”Every day, no matter how much traffic there is, it slows down right by McKnight [Road near Maplewood on I-94]. . . . There have been times when we have stopped and had a c.o.ke somewhere because it gets so miserable sitting on the highway.”
Commuters know what they are in for, and they take charge of the situation.
If average trip time is not the source of bother, what is? Julie Cross, another Star Tribune Star Tribune reader, articulated this well: reader, articulated this well: ”Picking the fastest route for my morning commute from Apple Valley is a daily gamble. Should I chance Cedar Avenue, hoping to hit free-flowing traffic for a 5-minute trip to work in Eagan? Or would Cedar be stop-and-go, making the reliable 10-minute trip on Interstate Hwy. 35E the better bet?”
Pay attention when Cross used the word reliable reliable. She knew well the average length of her trip to work; what troubled her was the larger variability, and thus unreliability, of the Cedar Avenue option. The highway route required ten minutes, with hardly any day-today variation. Now, if the Cedar Avenue option took five minutes without fail, Julie would never consider taking I-35E. Conversely, if the Cedar Avenue stretch took fifteen minutes without fail, Julie would always take I-35E. The only reason Julie Cross anted up each morning was that the Cedar Avenue route might take less time, even though she knew on average it would take longer. In general, if but one of two routes has variable trip times, then the bet is on. (See Figure 1-1 Figure 1-1.) It is tempting to think proper trip planning will beat back any variability in travel time. But just like Disney's problem of fluctuating demand, this beast proves hard to slay. Jim Foti, who pens the Roadguy column at the Star Tribune Star Tribune, learned the lesson firsthand: Figure 1-1 Julie Cross's Morning Commute Problem: Impact of Variable Trip Times Julie Cross's Morning Commute Problem: Impact of Variable Trip Times [image]
”Last week, when Roadguy had his radio gig, he had to head out to Eden Prairie during the evening rush hour. Scarred by memories of backups at the Hwy. 212 exit, he allowed himself plenty of extra time. But the drive, right around 5 P.M P.M., turned out to be as easy and graceful as a computerized animation, and Roadguy reached his destination nearly 20 minutes early.”
Drivers find themselves in a no-win situation: arriving twenty minutes early leads to wasted time and even unanswered doorbells, while arriving twenty minutes late spoils other people's moods, wastes their time, and sometimes causes missed connections. This double whammy is on top of any extra time set aside in antic.i.p.ation of traffic. And once again, variability is the culprit. Jim's strategy would have produced fruit if every trip were like the average trip. In reality, a trip that takes fifteen minutes on average may take only ten minutes on good days but eat up thirty minutes on rubbernecking days. If Jim allows fifteen minutes, he will arrive too early most of the time, and too late some of the time. On few days will he finish the trip in exactly fifteen minutes. In short, variable traffic conditions mess up our well-laid schedules, and that ought to upset us more than the average journey time.
After spending decades fighting average congestion levels, traffic engineers at state departments of transportation have come around to the paramount issue of variable trip times. What is the source of such variability? Cambridge Systematics, an influential transportation consultancy, has estimated that bottlenecks, such as three lanes dropping to two and poorly designed interchanges, account for only 40 percent of congestion delay in the United States. Another 40 percent is due to accidents and bad weather. Choke points on highways restrict capacity and cause predictable average delay, while road accidents and weather-related incidents induce variability around the average. They can create extraordinary gridlocks, like this one . . .
A truck carrying 45,000 pounds of sunflower seeds tipped over around 5:45 A.M A.M. and blocked the left two lanes of the freeway for more than 2 hours. Motorists encountered delays of 30 to 45 minutes as they tried to navigate past the scene.
. . . and this one: A dusting of snow Monday was enough to snarl traffic on the freeways. . . . From 5 A.M A.M. to just after 5 P.M P.M., 110 crashes and 20 rollovers were reported on Minnesota roads. . . . A state transportation official had just two words for drivers: Slow down!
The unpredictability of such events makes freeway congestion unavoidable, and delay on some days considerably worse than the average. Not surprisingly, building more roads is the wrong medicine: supplemental capacity can eliminate bottlenecks, at least in the short term, but it does not directly affect reliability. Worse, many transportation experts, including economist Anthony Downs, warn that we cannot build our way out of congestion. In his book Still Stuck in Traffic Still Stuck in Traffic, Downs elegantly espouses his principle of triple convergence, which postulates that as soon as new capacity gets built, commuters s.h.i.+ft their behavior in three notable ways to crowd out any planned benefits: those who previously used local roads decide to switch back to freeways, those who previously altered travel times reverse that decision, and those who previously elected to take public transit return to driving. Thus, new thinking is needed.
The Minnesota Department of Transportation (Mn/DOT) has championed an advanced technique called ”ramp metering.” Ramp meters are stop-go lights installed on highway entrances to regulate the inflow of traffic. ”One car per green” is the familiar mantra. Detectors measure the flow of traffic on the freeway; when the flow exceeds 3,900 vehicles per hour, the freeway is deemed ”full,” and the meters are turned on to hold back cars at the on-ramp. Another detector counts the backup on the ramp; when the backup threatens to spill over to the local area, the metering speed increases to dump traffic onto the freeway faster. According to an operations specialist with Mn/DOT, these controls temporarily delay the onset of congestion on the freeway.
Ramp metering has compiled an impressive record of success in several metropolitan areas. For example, Seattle saw traffic volume swell by 74 percent even as average journey time was halved during peak hours. Not only were more trips completed, but also less time was spent per trip! So incredible was this double bonus that researchers at the University of California, Berkeley, called it ”the freeway congestion paradox.” Typically, as more vehicles pile onto the same stretch of highway, inducing congestion, we expect travel times to suffer; conversely, with traffic moving more slowly, the volume of vehicles should decline. Such laws of physics seem immutable. How does ramp metering make its magic?
To unravel the paradox, we must first understand why the emergence of congestion is so feared. Statistical evidence has revealed that once traffic starts to pile up, the average speed of vehicles plunges, and oddly, the carrying capacity of the road degrades below its planned level. In one study, as average speed dropped from 60 to 15 miles per hour during peak hours, traffic flow dropped from 2,000 to 1,200 vehicles per hour. This disturbing situation seemed as illogical as if a restaurateur decided to lay off 40 percent of her staff during busy Friday nights, when one would have thought it crucial to run the kitchen at maximum efficiency. In response to the unsettling discovery, the Berkeley researchers recommended a policy of operating freeways at their optimal speeds, typically 50 to 70 miles per hour, for as much time as possible. In ramp metering, they found an ideal way to throttle the influx of vehicles, a means to maintain the condition of the highway just below congestion level. Its purpose is stamping out variability of traffic speed. The gain in terms of reduced travel time and increased traffic flow ”far exceeds any improvements that could be achieved by constructing more freeway lanes.”
And there is more to ramp meters. They also mitigate the variability of travel time. Two effects are at play here. First, metering ramps regulate speed, which leads directly to more reliable journey times. Second, the rule stipulating one car per green light s.p.a.ces out vehicles as they enter the highway, and this dramatically brings down accident rates. Fewer accidents mean less congestion and fewer unexpected slowdowns. This is nowhere more widely felt than in the North Star State, birthplace of the notorious ”Minnesota Merge.” Jim Foti's readers again provided the color commentary: ”This is a personal peeve of mine, witnessing people slowly, gradually accelerate on to the freeway so that they just barely make it to the speed limit right at the moment they merge on to the freeway; this causes a conga line of people behind that first merger who end up arriving on to the freeway at 50-45-40-35-30 mph. Slow accelerating mergers can be almost as bad as people who stop at the bottom of the ramps waiting for an opening.””[Where ramps are not metered,] groups of two, three, or more cars [are] TAILGATING EACH OTHER ON THE RAMPS, try to merge as a group. What the heck is wrong with their heads? Unless there are four or five car lengths between cars on the expressway already, how do they expect to keep cars in the right lane from braking?””The reason folks don't use their turn signal on the highway is that most of the time there is a jerk in the other lane who closes the gap so you can't get in. . . . [The person above] is 100 percent right. I no longer use my turn signal on the highway because of the gapclosers.”
One reason why volume declines in concert with reducing speed is that vehicles get too close together for comfort when roads become congested. Some drivers are then p.r.o.ne to braking frequently, and in so doing, they release ”shock waves” of reactive deceleration upstream, further disrupting the flow of traffic. Thus, the leaching of capacity during rush hours results from incompetence, impatience, aggression, and self-preservation.
Mn/DOT was one of the pioneers in ramp metering, installing its first meters in 1969. During a ”war on congestion” in the 1990s, the network grew sixfold to become the densest in the nation, encompa.s.sing two-thirds, or 210 miles, of the freeway system in the Twin Cities metropolitan area. Mn/DOT is also the most aggressive among its peers at holding back ramp traffic during peak hours in order to deliver a reliable flow on the freeway. Industry experts regard Minnesota's system of 430 ramp meters as a national model.
At their core, both Disney and Mn/DOT face the scourge of congestion, and they have both come to realize that no amount of capacity expansion can banish the problem of variability due to fluctuating patron arrivals or unpredictable on-road incidents. Besides, expansion projects take time, money, and frequently political will as well as sacrifice from current users for a future, common good. Growing capacity is a necessary but insufficient solution. Statisticians believe that a sound transportation policy should emphasize optimally utilizing available capacity. Finding new ways to do so costs significantly less than constructing new highways and yields quicker returns. Ramp metering is one such solution. Disney managers have concluded that measures to optimize operations, while effective, also are not sufficient; they have gone one step further than freeway engineers. The crown jewel in Disney's operating manual is perception management.
A body of scholarly research supports the view that crowd control is much more than a mathematical problem or an engineering puzzle; it has a human, psychological, touchy-feely dimension. A key tenet of this research-that perceived waiting time does not equal actual waiting time-has been demonstrated in multiple studies. Mirrors in elevator lobbies, for example, distort people's sense of the amount of waiting time; we tend not to count time spent looking at our reflection as waiting time. Accordingly, Disney engineers, or ”Imagineers,” devote a lot of effort to shaping patrons' perception of waiting times. By contrast, engineering solutions, including ramp metering, tend to target reductions in actual actual waiting times; these efforts may fail because people misjudge how much time they have stood in lines or stalled their cars. waiting times; these efforts may fail because people misjudge how much time they have stood in lines or stalled their cars.
Over the years, Disney has perfected the magic of managing perceptions. Take a walk around the park, and you cannot fail to see their handiwork. The waiting area of Expedition Everest, for instance, is decorated as a Nepalese village, with artifacts and flora brought back from the Himalayas; before getting on the roller-coaster, patrons weave through a yeti museum and encounter cryptic messages that generate excitement. At other sites, when lines get terribly long, ”Streetmosphere” performers playing Hollywood characters mill around to entertain guests. Signs show estimated waiting times that ”intentionally turn out to be longer than the actual time waited,” according to Bruce Laval, a former Disney executive. The next time you telephone customer service and hear that computer voice announcing, ”Your expected wait time is five minutes,” contrast how you feel if a customer service rep picks up the call after two minutes with your mental state if you are still on hold after eight minutes. Such is the power of this cla.s.sic strategy of underpromising and overdelivering. These and other designs suggest a briskly moving line or divert attention away from the queue.
The superstar of the Disney queue management effort is Fast-Pa.s.s, the proprietary ”virtual” reservation system launched in 2000. Arriving at any of the major attractions, guests can either join the ”standby” line and wait then and there, or opt to pick up FastPa.s.ses, which ent.i.tle them to return at a designated later time and join an express lane. Since the FastPa.s.s lane always clears at a much higher rate than the standby line, the typical wait will be five minutes or less when FastPa.s.s holders resurface during the prea.s.signed time. To aid guests in their decision, Disney posts the estimated wait time for those choosing the standby line, juxtaposed with the FastPa.s.s return time. Testimony from satisfied patrons points to the unmistakable success of this concept. One a.n.a.lytically minded fan, Allan Jayne Jr., demonstrated why: ”How effective is FastPa.s.s? Very. . . . Let's say that FastPa.s.s forced the regular ('standby line') riders to wait on average 1 hours each instead of 1 hour while FastPa.s.s riders don't wait at all. So we have 9,000 people who did not spend any time waiting and 3,000 riders who waited an average of 1 hours each for a total wait of 4,500 hours. That is about six months of waiting compared with 16 months without FastPa.s.s [all 12,000 riders waiting 1 hour each]. Thus FastPa.s.s saved ten months of standing in line!”
Satisfied guests are eager to pa.s.s along their wisdom, as Julie Neal did on her blog: How to Get the Most from FastPa.s.s1. Designate someone as your FastPa.s.s supervisor. This person will hold all your park tickets, go off to get FastPa.s.ses for your entire party throughout the day, and watch the time. h.e.l.lo, Dad?2. Always hold at least one FastPa.s.s, so you're always ”on the clock” for at least one attraction. Get one when you get in the park, then others as often as possible throughout the day.3. Don't sweat it if you miss the return time. Disney rarely enforces it, as long as you use your ticket the same day it was issued.4. Use the service for every FastPa.s.s attraction except those you'll be riding before 10 A.M. A.M. or very late at night. or very late at night.
Clearly, FastPa.s.s users love the product-but how much waiting time can they save? Amazingly, the answer is none none; they spend the same amount of time waiting for popular rides with or without FastPa.s.s! It is mistaken to think that FastPa.s.s eliminates waiting, as the above quotation suggested; it is just that instead of standing in line and in the elements, patrons are set free to indulge in other activities, whether on less popular rides or in restaurants, bathrooms, hotel beds, spas, or shops. The time in queue, which is the lag between arriving at the ride to pick up a FastPa.s.s ticket and actually getting on the ride, may in fact be even longer than before. Given that the attractions have the same capacities with or without FastPa.s.ses, it is just not possible to accommodate more guests by merely introducing a reservation system. So Disney confirms yet again that perception trumps reality. The FastPa.s.s concept is an absolute stroke of genius; it utterly changes perceived waiting times and has made many, many park-goers very, very giddy.
Behind the scenes, statisticians run the FastPa.s.s system through a network of computers that count visitors and record wait times. When a new guest arrives, they figure out how long the ride would take to serve all the patrons in front of him or her, including the ”virtual” ones now scattered around the park holding dearly to their FastPa.s.s tickets. The guest is then advised a return time later in the day. The line looks short but only because many people in line are not physically present. The new guest does not get to skip ahead. In effect, Disney presents park-goers the Julie Cross gamble: should they accept the reliable reliable FastPa.s.s option, or should they get in the standby line and roll the die? Those in the standby line can get in with minimal waits if they happen to catch a lull in guest arrivals or FastPa.s.s returns, but more often than not, they will suffer hour-plus waits, as the following frustrated patron could attest: FastPa.s.s option, or should they get in the standby line and roll the die? Those in the standby line can get in with minimal waits if they happen to catch a lull in guest arrivals or FastPa.s.s returns, but more often than not, they will suffer hour-plus waits, as the following frustrated patron could attest: ”After standing in line for Peter Pan last summer for over an hour watching the FastPa.s.s line moving through constantly, it appeared that the Cast Members were more inclined to let the FastPa.s.s holders have far too much precedence over those of us who were sweating profusely (not to mention not smelling too great after a day at the park). It was aggravating.”
Compare that experience with this view from the other line: ”A lot of people were trying to figure out who we were. You could feel their stares.”
Like ramp metering, FastPa.s.s also works by stamping out variability, in that guests are being s.p.a.ced out as they arrive. When the rate of arrival exceeds the ride's capacity, those picking up FastPa.s.ses agree to return later in the day. At other times, when demand lapses temporarily, standby guests are admitted readily to prevent idle time. In this way, the rides run at full capacity whenever possible. As Professor d.i.c.k Larson, tellingly known as ”Dr. Queue,” remarked, ”Even though Disney's theme park lines get longer each year, customer satisfaction, as measured by exit polls, continues to rise.”
Back in Minnesota, perception trumped reality once more: much to the chagrin of Mn/DOT, the transportation department's prized ramp-metering strategy was under siege in the fall of 2000. State senator d.i.c.k Day led a charge to abolish the nationally recognized program, portraying it as part of the problem, not the solution. In his view, decades of ramp metering had come to naught as the Twin Cities continued to be among the most congested in America. The state came dead last, with 71 percent of its urban freeways declared congested in a report by the American Society of Civil Engineers.
Leave it to Senator Day to speak the minds of ”average Joes”-the people he meets at coffee shops, county fairs, summer parades, and the stock car races he loves. He saw ramp metering as a symbol of Big Government strangling our liberty: ”It's always bothered me-who stops? Who is the first person to stop at a ramp meter in the morning? Why does he stop? He should just go right through it. The first guy is jamming it up, and it ripples back to fifteen to twenty cars.” How the senator managed to tap into a deep well of discontent! The Star Tribune Star Tribune readers offered their firsthand accounts: readers offered their firsthand accounts: ”The operation of the meters makes no sense. Far too often the meters are on when the traffic is actually very light on the freeway, and in addition, the meters are cycling at a very slow rate.””Why do traffic managers allow the meters to create long lines at 6 P.M P.M. when there are about thirty cars on the freeway and they are moving at 75 miles per hour? What's up with that? Is no one minding the store?”
<script>