Part 49 (1/2)

p. 329

[C] Becquerel, Annales de Chimie, 1831. xlvi. p. 283.

[D] Andrews, Philosophical Magazine, 1836. ix. 182.

[E] Schweigger's Jahrbuch de Chimie, &c. 1830. Heft 8. Not understanding German, it is with extreme regret I confess I have not access, and cannot do justice, to the many most valuable papers in experimental electricity published in that language. I take this opportunity also of stating another circ.u.mstance which occasions me great trouble, and, as I find by experience, may make, me seemingly regardless of the labours of others:--it is a gradual loss of memory for some years past; and now, often when I read a memoir, I remember that I have seen it before, and would have rejoiced if at the right time I could have recollected and referred to it in the progress of my own papers.--M.F.

1636. I conclude, therefore, that the _facts_ upon which the doctrine of unipolarity was founded are not adverse to that unity and indivisibility of character which I have stated the current to possess, any more than the phenomena of the pile itself (which might well bear comparison with those of unipolar bodies,) are opposed to it. Probably the effects which have been called effects of unipolarity, and the peculiar differences of the positive and negative surface when discharging into air, gases, or other dielectrics (1480. 1525.) which have been already referred to, may have considerable relation to each other[A].

[A] See also Hare in Silliman's Journal, 1833. xxiv. 246.

1637. M. de la Rive has recently described a peculiar and remarkable effect of heat on a current when pa.s.sing between electrodes and a fluid[A]. It is, that if platina electrodes dip into acidulated water, no change is produced in the pa.s.sing current by making the positive electrode hotter or colder; whereas making the negative electrode hotter increased the deflexion of a galvanometer affected by the current, from 12 to 30 and even 45, whilst making it colder diminished the current in the same high proportions.

[A] Bibliotheque Universelle, 1837, vii. 388.

1638. That one electrode should have this striking relation to heat whilst the other remained absolutely without, seem to me as incompatible with what I conceived to be the character of a current as unipolarity (1627. 1635.), and it was therefore with some anxiety that I repeated the experiment. The electrodes which I used were platina; the electrolyte, water containing about one sixth of sulphuric acid by weight: the voltaic battery consisted of two pairs of amalgamated zinc and platina plates in dilute sulphuric acid, and the galvanometer in the circuit was one with two needles, and gave when the arrangement was complete a deflexion of 10 or 12.

1639. Under these circ.u.mstances heating either electrode increased the current; heating both produced still more effect. When both were heated, if either were cooled, the effect on the current fell in proportion. The proportion of effect due to heating this or that electrode varied, but on the whole heating the negative seemed to favour the pa.s.sage of the current somewhat more than heating the positive. Whether the application of heat were by a flame applied underneath, or one directed by a blowpipe from above, or by a hot iron or coal, the effect was the same.

1640. Having thus removed the difficulty out of the way of my views regarding a current, I did not pursue this curious experiment further. It is probable, that the difference between my results and those of M. de la Rive may depend upon the relative values of the currents used; for I employed only a weak one resulting from two pairs of plates two inches long and half an inch wide, whilst M. de la Rive used four pairs of plates of sixteen square inches in surface.

1641. Electric discharges in the atmosphere in the form of b.a.l.l.s of fire have occasionally been described. Such phenomena appear to me to be incompatible with all that we know of electricity and its modes of discharge. As _time_ is an element in the effect (1418. 1436.) it is possible perhaps that an electric discharge might really pa.s.s as a ball from place to place; but as every thing shows that its velocity must be almost infinite, and the time of its duration exceedingly small, it is impossible that the eye should perceive it as anything else than a line of light. That phenomena of b.a.l.l.s of fire may appear in the atmosphere, I do not mean to deny; but that they have anything to do with the discharge of ordinary electricity, or are at all related to lightning or atmospheric electricity, is much more than doubtful.

1642. All these considerations, and many others, help to confirm the conclusion, drawn over and over again, that the current is an indivisible thing; an axis of power, in every part of which both electric forces are present in equal amount[A] (517. 1627.). With conduction and electrolyzation, and even discharge by spark, such a view will harmonize without hurting any of our preconceived notions; but as relates to convection, a more startling result appears, which must therefore be considered.

[A] I am glad to refer here to the results obtained by Mr. Christie with magneto-electricity, Philosophical Transactions, 1833, p. 113 note. As regards the current in a wire, they confirm everything that I am contending for.

1643. If two b.a.l.l.s A and B be electrified in opposite states and held within each other's influence, the moment they move towards each other, a current, or those effects which are understood by the word current, will be produced. Whether A move towards B, or B move in the opposite direction towards A, a current, and in both cases having the same _direction_, will result. If A and B move from each other, then a _current_ in the opposite direction, or equivalent effects, will be produced.

1644. Or, as charge exists only by induction (1178. 1299.), and a body when electrified is necessarily in relation to other bodies in the opposite state; so, if a ball be electrified positively in the middle of a room and be then moved in any direction, effects will be produced, as _current_ in the same direction (to use the conventional mode of expression) had existed: or, if the ball be negatively electrified, and then moved, effects as if a current in a direction contrary to that of the motion had been formed, will be produced.

1645. I am saying of a single particle or of two what I have before said, in effect, of many (1633.). If the former account of currents be true, then that just stated must be a necessary result. And, though the statement may seem startling at first, it is to be considered that, according to my theory of induction, the charged conductor or particle is related to the distant conductor in the opposite state, or that which terminates the extent of the induction, by all the intermediate particles (1165, 1295.), these becoming polarized exactly as the particles of a solid electrolyte do when interposed between the two electrodes. Hence the conclusion regarding the unity and ident.i.ty of the current in the case of convection, jointly with the former cases, is not so strange as it might at first appear.

1646. There is a very remarkable phenomenon or effect of the electrolytic discharge, first pointed out, I believe, by Mr. Porrett, of the acc.u.mulation of fluid under decomposing action in the current on one side of an interposed diaphragm[A]. It is a mechanical result; and as the liquid pa.s.ses from the positive towards the negative electrode in all the known cases, it seems to establish a relation to the polar condition of the dielectric in which the current exists (1164. 1525.). It has not as yet been sufficiently investigated by experiment; for De la Rive says[B], it requires that the water should be a bad conductor, as, for instance, distilled water, the effect not happening with strong solutions; whereas, Dutrochet says[C] the contrary is the case, and that, the effect is not directly due to the electric current.

[A] Annals of Philosophy, 1816. viii. p. 75.

[B] Annales de Chimie, 1835. xxviii. p. 196.

[C] Annales de Chimie, 1832, xlix. p. 423.

1647. Becquerel, in his Traite de l'Electricite, has brought together the considerations which arise for and against the opinion, that the effect generally is an electric effect[A]. Though I have no decisive fact to quote at present, I cannot refrain from venturing an opinion, that the effect is a.n.a.logous both to combination and convection (1623.), being a case of carrying due to the relation of the diaphragm and the fluid in contact with it, through which the electric discharge is jointly effected; and further, that the peculiar relation of positive and negative small and large surfaces already referred to (1482. 1503. 1525.), may be the direct cause of the fluid and the diaphragm travelling in contrary but determinate directions. A very valuable experiment has been made by M. Becquerel with particles of clay[B], which will probably bear importantly on this point.

[A] Vol. iv. p. 192, 197.