Part 31 (1/2)

1050. Another effect is observed at the same time, which has long been known to philosophers, namely, that a bright electric spark occurs at the place of disjunction.

1051. A brief account of these results, with some of a corresponding character which I had observed in using long wires, was published in the Philosophical Magazine for 1834[A]; and I added to them some observations on their nature. Further investigations led me to perceive the inaccuracy of my first notions, and ended in identifying these effects with the phenomena of induction which I had been fortunate enough to develop in the First Series of these Experimental Researches (1.-59.)[B]. Notwithstanding this ident.i.ty, the extension and the results supply, lead me to believe that they will be found worthy of the attention of the Royal Society.

[A] Vol. v. pp. 349, 444.

[B] Philosophical Transactions, 1832, p. 126.

1052. The _electromotor_ used consisted of a cylinder of zinc introduced between the two parts of a double cylinder of copper, and preserved from metallic contact in the usual way by corks. The zinc cylinder was eight inches high and four inches in diameter. Both it and the copper cylinder were supplied with stiff wires, surmounted by cups containing mercury; and it was at these cups that the contacts of wires, helices, or electro-magnets, used to complete the circuit, were made or broken. These cups I will call G and E throughout the rest of this paper (1079.).

1053. Certain _helices_ were constructed, some of which it will be necessary to describe. A pasteboard tube had four copper wires, one twenty-fourth of an inch in thickness, wound round it, each forming a helix in the same direction from end to end: the convolutions of each wire were separated by string, and the superposed helices prevented from touching by intervening calico. The lengths of the wires forming the helices were 48, 49.5, 48, and 45 feet. The first and third wires were united together so as to form one consistent helix of 96 feet in length; and the second and fourth wires were similarly united to form a second helix, closely interwoven with the first, and 94.5 feet in length. These helices may be distinguished by the numbers i and ii. They were carefully examined by a powerful current of electricity and a galvanometer, and found to have no communication with each other.

1054. Another helix was constructed upon a similar pasteboard tube, two lengths of the same copper wire being used, each forty-six feet long. These were united into one consistent helix of ninety-two feet, which therefore was nearly equal in value to either of the former helices, but was not in close inductive a.s.sociation with them. It may be distinguished by the number iii.

1055. A fourth helix was constructed of very thick copper wire, being one-fifth of an inch in diameter; the length of wire used was seventy-nine feet, independent of the straight terminal portions.

1056. The princ.i.p.al _electro-magnet_ employed consisted of a cylindrical bar of soft iron twenty-five inches long, and one inch and three quarters in diameter, bent into a ring, so that the ends nearly touched, and surrounded by three coils of thick copper wire, the similar ends of which were fastened together; each of these terminations was soldered to a copper rod, serving as a conducting continuation of the wire. Hence any electric current sent through the rods was divided in the helices surrounding the ring, into three parts, all of which, however, moved in the same direction.

The three wires may therefore be considered as representing one wire, of thrice the thickness of the wire really used.

1057. Other electro-magnets could be made at pleasure by introducing a soft iron rod into any of the helices described (1053, &c.).

1058. The _galvanometer_ which I had occasion to use was rough in its construction, having but one magnetic needle, and not at all delicate in its indications.

1059. The effects to be considered _depend on the conductor_ employed to complete the communication between the zinc and copper plates of the electromotor; and I shall have to consider this conductor under four different forms: as the helix of an electro-magnet (1056); as an ordinary helix (1053, &c.); as a _long_ extended wire, having its course such that the parts can exert little or no mutual influence; and as a _short_ wire.

In all cases the conductor was of copper.

1060. The peculiar effects are best shown by the _electro-magnet_ (1056.).

When it was used to complete the communication at the electromotor, there was no sensible spark on _making_ contact, but on _breaking_ contact there was a very large and bright spark, with considerable combustion of the mercury. Then, again, with respect to the shock: if the hands were moistened in salt and water, and good contact between them and the wires retained, no shock could be felt upon _making_ contact at the electromotor, but a powerful one on _breaking_ contact.

1061. When the _helix_ i or iii (1053, &c.) was used as the connecting conductor, there was also a good spark on breaking contact, but none (sensibly) on making contact. On trying to obtain the shock from these helices, I could not succeed at first. By joining the similar ends of i and ii so as to make the two helices equivalent to one helix, having wire of double thickness, I could just obtain the sensation. Using the helix of thick wire (1055.) the shock was distinctly obtained. On placing the tongue between two plates of silver connected by wires with the parts which the hands had heretofore touched (1064.), there was a powerful shock on _breaking_ contact, but none on _making_ contact.

1062. The power of producing these phenomena exists therefore in the simple helix, as in the electro-magnet, although by no means in the same high degree.

1063. On putting a bar of soft iron into the helix, it became an electro-magnet (1057.), and its power was instantly and greatly raised. On putting a bar of copper into the helix, no change was produced, the action being that of the helix alone. The two helices i and ii, made into one helix of twofold length of wire, produced a greater effect than either i or ii alone.

1064. On descending from the helix to the mere _long wire_, the following effects were obtained, A copper wire, 0.18 of an inch in diameter, and 132 feet in length, was laid out upon the floor of the laboratory, and used as the connecting conductor (1059.); it gave no sensible spark on making contact, but produced a bright one on breaking contact, yet not so bright as that from the helix (1061.) On endeavouring to obtain the electric shock at the moment contact was broken, I could not succeed so as to make it pa.s.s through the hands; but by using two silver plates fastened by small wires to the extremity of the princ.i.p.al wire used, and introducing the tongue between those plates, I succeeded in obtaining powerful shocks upon the tongue and gums, and could easily convulse a flounder, an eel, or a frog.

None of these effects could be obtained directly from the electromotor, i.e. when the tongue, frog, or fish was in a similar, and therefore comparative manner, interposed in the course of the communication between the zinc and copper plates, separated everywhere else by the acid used to excite the combination, or by air. The bright spark and the shock, produced only on breaking contact, are therefore effects of the same kind as those produced in a higher degree by the helix, and in a still higher degree by the electro-magnet.

1065. In order to compare an extended wire with a helix, the helix i, containing ninety-six feet, and ninety-six feet of the same-sized wire lying on the floor of the laboratory, were used alternately as conductors: the former gave a much brighter spark at the moment of disjunction than the latter. Again, twenty-eight feet of copper wire were made up into a helix, and being used gave a good spark on disjunction at the electromotor; being then suddenly pulled out and again employed, it gave a much smaller spark than before, although nothing but its spiral arrangement had been changed.

1066. As the superiority of a helix over a wire is important to the philosophy of the effect, I took particular pains to ascertain the fact with certainty. A wire of copper sixty-seven feet long was bent in the middle so as to form a double termination which could be communicated with the electromotor; one of the halves of this wire was made into a helix and the other remained in its extended condition. When these were used alternately as the connecting wire, the helix half gave by much the strongest spark. It even gave a stronger spark than when it and the extended wire were used conjointly as a double conductor.

1067. When a _short wire_ is used, _all_ these effects disappear. If it be only two or three inches long, a spark can scarcely be perceived on breaking the junction. If it be ten or twelve inches long and moderately thick, a small spark may be more easily obtained. As the length is increased, the spark becomes proportionately brighter, until from extreme length the resistance offered by the metal as a conductor begins to interfere with the princ.i.p.al result.

1068. The effect of elongation was well shown thus: 114 feet of copper wire, one-eighteenth of an inch in diameter, were extended on the floor and used as a conductor; it remained cold, but gave a bright spark on breaking contact. Being crossed so that the two terminations were in contact near the extremities, it was again used as a conductor, only twelve inches now being included in the circuit: the wire became very hot from the greater quant.i.ty of electricity pa.s.sing through it, and yet the spark on breaking contact was scarcely visible. The experiment was repeated with a wire one-ninth of an inch in diameter and thirty-six feet long with the same results.

1069. That the effects, and also the action, in all these forms of the experiment are identical, is evident from the manner in which the former can be gradually raised from that produced by the shortest wire to that of the most powerful electro-magnet: and this capability of examining what will happen by the most powerful apparatus, and then experimenting for the same results, or reasoning from them, with the weaker arrangements, is of great advantage in making out the true principles of the phenomena.