Part 13 (1/2)

430. A piece of common salt previously fused and solidified being introduced into the circuit was sufficient almost entirely to destroy the action on the galvanometer. Fused and cooled chloride of lead produced the same effect. The conducting power of these bodies, _when fluid_, is very great (395. 402.).

431. These effects, produced by using the common machine and the voltaic battery, agree therefore with each other, and with the law laid down in this paper (394.); and also with the opinion I have supported, in the Third Series of these Researches, of the ident.i.ty of electricity derived from different sources (360.).

432. The effect of heat in increasing the conducting power of many substances, especially for electricity of high tension, is well known. I have lately met with an extraordinary case of this kind, for electricity of low tension, or that of the voltaic pile, and which is in direct contrast with the influence of heat upon metallic bodies, as observed and described by Sir Humphry Davy[A].

[A] Philosophical Transactions, 1821, p. 131.

433. The substance presenting this effect is sulphuret of silver. It was made by fusing a mixture of precipitated silver and sublimed sulphur, removing the film of silver by a file from the exterior of the fused ma.s.s, pulverizing the sulphuret, mingling it with more sulphur, and fusing it again in a green gla.s.s tube, so that no air should obtain access during the process. The surface of the sulphuret being again removed by a file or knife, it was considered quite free from uncombined silver.

434. When a piece of this sulphuret, half an inch in thickness, was put between surfaces of platina, terminating the poles of a voltaic battery of twenty pairs of four-inch plates, a galvanometer being also included in the circuit, the needle was slightly deflected, indicating a feeble conducting power. On pressing the platina poles and sulphuret together with the fingers, the conducting power increased as the whole became warm. On applying a lamp under the sulphuret between the poles, the conducting power rose rapidly with the heat, and at last-the galvanometer needle jumped into a fixed position, and the sulphuret was found conducting in the manner of a metal. On removing the lamp and allowing the heat to fall, the effects were reversed, the needle at first began to vibrate a little, then gradually left its transverse direction, and at last returned to a position very nearly that which it would take when no current was pa.s.sing through the galvanometer.

435. Occasionally, when the contact of the sulphuret with the platina poles was good, the battery freshly charged, and the commencing temperature not too low, the mere current of electricity from the battery was sufficient to raise the temperature of the sulphuret; and then, without any application of extraneous heat, it went on increasing conjointly in temperature and conducting power, until the cooling influence of the air limited the effects. In such cases it was generally necessary to cool the whole purposely, to show the returning series of phenomena.

436. Occasionally, also, the effects would sink of themselves, and could not be renewed until a fresh surface of the sulphuret had been applied to the positive pole. This was in consequence of peculiar results of decomposition, to which I shall have occasion to revert in the section on Electro-chemical Decomposition, and was conveniently avoided by inserting the ends of two pieces of platina wire into the opposite extremities of a portion of sulphuret fused in a gla.s.s tube, and placing this arrangement between the poles of the battery.

437. The hot sulphuret of silver conducts sufficiently well to give a bright spark with charcoal, &c. &c., in the manner of a metal.

438. The native grey sulphuret of silver, and the ruby silver ore, both presented the same phenomena. The native malleable sulphuret of silver presented precisely the same appearances as the artificial sulphuret.

439. There is no other body with which I am acquainted, that, like sulphuret of silver, can compare with metals in conducting power for electricity of low tension when hot, but which, unlike them, during cooling, loses in power, whilst they, on the contrary, gain. Probably, however, many others may, when sought for, be found[A].

[A] See now on this subject, 1340, 1341.--_Dec. 1838._

440. The proto-sulphuret of iron, the native per-sulphuret of iron, a.r.s.enical sulphuret of iron, native yellow sulphuret of copper and iron, grey artificial sulphuret of copper, artificial sulphuret of bis.m.u.th, and artificial grey sulphuret of tin, all conduct the voltaic battery current when cold, more or less, some giving sparks like the metals, others not being sufficient for that high effect. They did not seem to conduct better when heated, than before; but I had not time to enter accurately into the investigation of this point. Almost all of them became much heated by the transmission of the current, and present some very interesting phenomena in that respect. The sulphuret of antimony does not conduct the same current sensibly either hot or cold, but is amongst those bodies acquiring conducting power when fused (402.). The sulphuret of silver and perhaps some others decompose whilst in the solid state; but the phenomena of this decomposition will be reserved for its proper place in the next series of these Researches.

441. Notwithstanding the extreme dissimilarity between sulphuret of silver and gases or vapours, I cannot help suspecting the action of heat upon them to be the same, bringing them all into the same cla.s.s as conductors of electricity, although with those great differences in degree, which are found to exist under common circ.u.mstances. When gases are heated, they increase in conducting power, both for common and voltaic electricity (271.); and it is probable that if we could compress and condense them at the same time, we should still further increase their conducting power.

Cagniard de la Tour has shown that a substance, for instance water, may be so expanded by heat whilst in the liquid state, or condensed whilst in the vaporous state, that the two states shall coincide at one point, and the transition from one to the other be so gradual that no line of demarcation can be pointed out[A]; that, in fact, the two states shall become one;--which one state presents us at different times with differences in degree as to certain properties and relations; and which differences are, under ordinary circ.u.mstances, so great as to be equivalent to two different states.

[A] Annales de Chimie, xxi. pp. 127, 178.

442. I cannot but suppose at present that at that point where the liquid and the gaseous state coincide, the conducting properties are the same for both; but that they diminish as the expansion of the matter into a rarer form takes place by the removal of the necessary pressure; still, however, retaining, as might be expected, the capability of having what feeble conducting power remains, increased by the action of heat.

443. I venture to give the following summary of the conditions of electric conduction in bodies, not however without fearing that I may have omitted some important points[A].

[A] See now in relation to this subject, 1320--1242.--_Dec. 1838._

444. All bodies conduct electricity in the same manner from metals to lac and gases, but in very different degrees.

445. Conducting power is in some bodies powerfully increased by heat, and in others diminished, yet without our perceiving any accompanying essential electrical difference, either in the bodies or in the changes occasioned by the electricity conducted.

446. A numerous cla.s.s of bodies, insulating electricity of low intensity, when solid, conduct it very freely when fluid, and are then decomposed by it.

447. But there are many fluid bodies which do not sensibly conduct electricity of this low intensity; there are some which conduct it and are not decomposed; nor is fluidity essential to decomposition[A].

[A] See the next series of these Experimental Researches.

448. There is but one body yet discovered[A] which, insulating a voltaic current when solid, and conducting it when fluid, is not decomposed in the latter case (414.).