Part 11 (1/2)

The United States imports more oil from Canada than from any other nation, about 19 percent of its total foreign supply, and around half of that now comes from the oil sands. Anything that reduces our dependence on Middle Eastern oil, many Americans would say, is a good thing. But clawing and cooking one barrel of crude from the oil sands emits as much as three times more carbon dioxide than letting one gush from the ground in Saudi Arabia. The oil sands are still a tiny part of the world's carbon problema”they account for less than a tenth of one percent of global CO2 emissionsa”but to many environmentalists they are the thin end of the wedge, the first step along a path that could lead to other, even dirtier sources of oil: producing it from oil shale or coal. ”Oil sands represent a decision point for North America and the world,” says Simon Dyer of the Pembina Inst.i.tute, a moderate and widely respected Canadian environmental group. ”Are we going to get serious about alternative energy, or are we going to go down the unconventional-oil track? The fact that we're willing to move four tons of earth for a single barrel really shows that the world is running out of easy oil.”

That thirsty world has come cras.h.i.+ng in on Fort McKay. Yet Jim Boucher's view of it, from an elegant new building at the entrance to the besieged little village, contains more shades of gray than you might expect. ”The choice we make is a difficult one,” Boucher said when I visited him last summer. For a long time the First Nation tried to fight the oil sands industry, with little success. Now, Boucher said, ”we're trying to develop the community's capacity to take advantage of the opportunity.” Boucher presides not only over this First Nation, as chief, but also over the Fort McKay Group of Companies, a community-owned business that provides ser vices to the oil sands industry and brought in $85 million in 2007. Unemployment is under 5 percent in the village, and it has a health clinic, a youth center, and a hundred new three-bedroom houses that the community rents to its members for far less than market rates. The First Nation is even thinking of opening its own mine: it owns 8,200 acres of prime oil sands land across the river, right next to the Syncrude mine where the ducks died.

As Boucher was telling me all this, he was picking bits of meat from a smoked whitefish splayed out on his conference table next to a bank of windows that offered a panoramic view of the river. A staff member had delivered the fish in a plastic bag, but Boucher couldn't say where it had come from. ”I can tell you one thing,” he said. ”It doesn't come from the Athabasca.”

Without the river, there would be no oil sands industry. It's the river that over tens of millions of years has eroded away billions of cubic yards of sediment that once covered the bitumen, thereby bringing it within reach of shovelsa”and in some places all the way to the surface. On a hot summer day along the Athabasca, near Fort McKay for example, bitumen oozes from the riverbank and casts an oily sheen on the water. Early fur traders reported seeing the stuff and watching natives use it to caulk their canoes. At room temperature, bitumen is like mola.s.ses, and below 50 degrees F or so it is as hard as a hockey puck, as Canadians invariably put it. Once upon a time, though, it was light crude, the same liquid that oil companies have been pumping from deep traps in southern Alberta for nearly a century. Tens of millions of years ago, geologists think, a large volume of that oil was pushed northeastward, perhaps by the rise of the Rocky Mountains. In the process it also migrated upward, along sloping layers of sediment, until eventually it reached depths shallow and cool enough for bacteria to thrive. Those bacteria degraded the oil to bitumen.

The Alberta government estimates that the province's three main oil sands deposits, of which the Athabasca one is the largest, contain 173 billion barrels of oil that are economically recoverable today. ”The size of that, on the world stagea”it's ma.s.sive,” says Rick George, CEO of Suncor, which opened the first mine on the Athabasca River in 1967. In 2003, when the Oil & Gas Journal added the Alberta oil sands to its list of proven reserves, it immediately propelled Canada to second place, behind Saudi Arabia, among oil-producing nations. The proven reserves in the oil sands are eight times those of the entire United States. ”And that number will do nothing but go up,” says George. The Alberta Energy Resources and Conservation Board estimates that more than 300 billion bar rels may one day be recoverable from the oil sands; it puts the total size of the deposit at 1.7 trillion barrels.

Getting oil from oil sands is simple but not easy. The giant electric shovels that rule the mines have hardened steel teeth that each weigh a ton, and as those teeth claw into the abrasive black sand 24/7, 365 days a year, they wear down every day or two; a welder then plays dentist to the dinosaurs, giving them new crowns. The dump trucks that rumble around the mine, hauling 400-ton loads from the shovels to a rock crusher, burn 50 gallons of diesel fuel an hour; it takes a forklift to change their tires, which wear out in six months. And every day in the Athabasca Valley, more than a million tons of sand emerge from such crushers and is mixed with more than 200,000 tons of water that must be heated, typically to 175 degrees F, to wash out the gluey bitumen. At the upgraders, the bitumen gets heated again, to about 900 degrees F, and compressed to more than 100 atmospheresa”that's what it takes to crack the complex molecules and either subtract carbon or add back the hydrogen that the bacteria removed ages ago. That's what it takes to make the light hydrocarbons we need to fill our gas tanks. It takes a stupendous amount of energy. In situ extraction, which is the only way to get at around 80 percent of those 173 billion barrels, can use up to twice as much energy as mining, because it requires so much steam.

Most of the energy to heat the water or make steam comes from burning natural gas, which also supplies the hydrogen for upgrading. Precisely because it is hydrogen rich and mostly free of impurities, natural gas is the cleanest-burning fossil fuel, the one that puts the least amount of carbon and other pollutants into the atmosphere. Critics thus say the oil sands industry is wasting the cleanest fuel to make the dirtiesta”that it turns gold into lead. The argument makes environmental but not economic sense, says David Keith, a physicist and energy expert at the University of Calgary. Each barrel of synthetic crude contains about five times more energy than the natural gas used to make it, and in much more valuable liquid form. ”In economic terms it's a slam dunk,” says Keith. ”This whole thing about turning gold into leada”it's the other way around. The gold in our society is liquid transportation fuels.”

Most of the carbon emissions from such fuels come from the tailpipes of the cars that burn them; on a ”wells-to-wheels” basis, the oil sands are only 15 to 40 percent dirtier than conventional oil. But the heavier carbon footprint remains an environmentala”and public relationsa”disadvantage. Last June Alberta's premier, Ed Stelmach, announced a plan to deal with the extra emissions. The province, he said, will spend over $1.5 billion to develop the technology for capturing carbon dioxide and storing it undergrounda”a strategy touted for years as a solution to climate change. By 2015 Alberta is hoping to capture 5 million tons of CO 2 a year from bitumen upgraders as well as from coal-fired power plants, which even in Alberta, to say nothing of the rest of the world, are a far larger source of CO2 than the oil sands. By 2020, according to the plan, the province's carbon emissions will level off, and by 2050 they will decline to 15 percent below their 2005 levels. That is far less of a cut than scientists say is necessary. But it is more than the U.S. government, say, has committed to in a credible way.

One thing Stelmach has consistently refused to do is ”touch the brake” on the oil sands boom. The boom has been gold for the provincial as well as the national economy; the town of Fort McMurray, south of the mines, is awash in Newfoundlanders and Nova Scotians fleeing unemployment in their own provinces. The provincial government has been collecting around a third of its revenue from lease sales and royalties on fossil fuel extraction, including oil sandsa”it was expecting to get nearly half this year, or $19 billion, but the collapse in oil prices since the summer has dropped that estimate to about $12 billion. Albertans are bitterly familiar with the boom-and-bust cycle; the last time oil prices collapsed, in the 1980s, the provincial economy didn't recover for a decade. The oil sands cover an area the size of North Carolina, and the provincial government has already leased around half of that, including all 1,356 square miles that are minable. It has yet to turn down an application to develop one of those leases, on environmental or any other grounds.

From a helicopter it's easy to see the industry's impact on the Athabasca Valley. Within minutes of lifting off from Fort McMurray, heading north along the east bank of the river, you pa.s.s over Suncor's Millennium minea”the company's leases extend practically to the town. On a day with a bit of wind, dust plumes billowing off the wheels and the loads of the dump trucks coalesce into a single enormous cloud that obscures large parts of the mine pit and spills over its lip. To the north, beyond a small expanse of intact forest, a similar cloud rises from the next pit, Suncor's Steepbank mine, and beyond that lie two more, and across the river two more. One evening last July the clouds had merged into a band of dust sweeping west across the devastated landscape. It was being sucked into the updraft of a storm cloud. In the distance steam and smoke and gas flames belched from the stacks of the Syncrude and Suncor upgradersa””dark satanic mills” inevitably come to mind, but they're a riveting sight all the same. From many miles away, you can smell the tarry stench. It stings your lungs when you get close enough.

From the air, however, the mines fall away quickly. Skimming low over the river, startling a young moose that was fording a narrow channel, a government biologist named Preston McEachern and I veered northwest toward the Birch Mountains, over vast expanses of scarcely disturbed forest. The Canadian boreal forest covers 2 million square miles, of which around 75 percent remains undeveloped. The oil sands mines have so far converted over 150 square milesa”a hundredth of a percent of the total areaa”into dust, dirt, and tailings ponds. Expansion of in situ extraction could affect a much larger area. At Suncor's Firebag facility, northeast of the Millennium mine, the forest has not been razed, but it has been dissected by roads and pipelines that service a checkerboard of large clearings, in each of which Suncor extracts deeply buried bitumen through a cl.u.s.ter of wells. Environmentalists and wildlife biologists worry that the widening fragmentation of the forest, by timber as well as mineral companies, endangers the woodland caribou and other animals. ”The boreal forest as we know it could be gone in a generation without major policy changes,” says Steve Kallick, director of the Pew Boreal Campaign, which aims to protect 50 percent of the forest.

McEachern, who works for Alberta Environment, a provincial agency, says the tailings ponds are his top concern. The mines dump wastewater in the ponds, he explains, because they are not allowed to dump waste into the Athabasca, and because they need to reuse the water. As the thick, brown slurry gushes from the discharge pipes, the sand quickly settles out, building the dike that retains the pond; the residual bitumen floats to the top. The fine clay and silt particles, though, take several years to settle, and when they do, they produce a yogurt-like goopa”the technical term is ”mature fine tailings”a”that is contaminated with toxic chemicals such as naphthenic acid and polycyclic aromatic hydrocarbons (PAH) and would take centuries to dry out on its own. Under the terms of their licenses, the mines are required to reclaim it somehow, but they have been missing their deadlines and still have not fully reclaimed a single pond.

In the oldest and most notorious one, Suncor's Pond 1, the sludge is perched high above the river, held back by a dike of compacted sand that rises more than 300 feet from the valley floor and is studded with pine trees. The dike has leaked in the past, and in 2007 a modeling study done by hydrogeologists at the University of Waterloo estimated that 45,000 gallons a day of contaminated water could be reaching the river. Suncor is now in the process of re-claiming Pond 1, piping some tailings to another pond, and replacing them with gypsum to consolidate the tailings. By 2010, the company says, the surface will be solid enough to plant trees on. Last summer it was still a blot of beige mud streaked with black bitumen and dotted with orange plastic scarecrows that are supposed to dissuade birds from landing and killing themselves.

The Alberta government a.s.serts that the river is not being contaminateda”that anything found in the river or in its delta, at Lake Athabasca, comes from natural bitumen seeps. The river cuts right through the oil sands downstream of the mines, and as our chopper zoomed along a few feet above it, McEachern pointed out several places where the riverbank was black and the water oily. ”There is an increase in a lot of metals as you move downstream,” he said. ”That's naturala”it's weathering of the geology. There's mercury in the fish up at Lake Athabascaa”we've had an advisory there since the 1990s. There are PAHs in the sediments in the delta. They're there because the river has eroded through the oil sands.”

Independent scientists, to say nothing of people who live downstream of the mines in the First Nations' community of Fort Chipewyan, on Lake Athabasca, are skeptical. ”It's inconceivable that you could move that much tar and have no effect,” says Peter Hodson, a fish toxicologist at Queen's University in Ontario. An Environment Canada study did in fact show an effect on fish in the Steepbank River, which flows past a Suncor mine into the Athabasca. Fish near the mine, Gerald Tetreault and his colleagues found when they caught some in 1999 and 2000, showed five times more activity of a liver enzyme that breaks down toxinsa”a widely used measure of exposure to pollutantsa”as did fish near a natural bitumen seep on the Steepbank.

”The thing that angers me,” says David Schindler, ”is that there's been no concerted effort to find out where the truth lies.”

Schindler, an ecologist at the University of Alberta in Edmonton, was talking about whether people in Fort Chipewyan have already been killed by pollution from the oil sands. In 2006 John O'Connor, a family physician who flew in weekly to treat patients at the health clinic in Fort Chip, told a radio interviewer that he had in recent years seen five cases of cholangiocarcinomaa”a cancer of the bile duct that normally strikes one in 100,000 people. Fort Chip has a population of around 1,000; statistically it was unlikely to have even one case. O'Connor hadn't managed to interest health authorities in the cancer cl.u.s.ter, but the radio interview drew wide attention to the story. ”Suddenly it was everywhere,” he says. ”It just exploded.”

Two of O'Connor's five cases, he says, had been confirmed by tissue biopsy; the other three patients had shown the same symptoms but had died before they could be biopsied. (Cholangiocarci-noma can be confused on CT scans with more common cancers such as liver or pancreatic cancer.) ”There is no evidence of elevated cancer rates in the community,” Howard May, a spokesperson for Alberta Health, wrote in an e-mail last September. But the agency, he said, was nonetheless conducting a more complete investigationa”this time actually examining the medical records from Fort Chipa”to try to quiet a controversy that was now two years old.

One winter night when Jim Boucher was a young boy, around the time the oil sands industry came to his forest, he was returning alone by dogsled to his grandparents' cabin from an errand in Fort McKay. It was a journey of twenty miles or so, and the temperature was minus 4 degrees F. In the moonlight Boucher spotted a flock of ptarmigan, white birds in the snow. He killed around fifty, loaded them on the dogsled, and brought them home. Four decades later, sitting in his chief-executive office in white chinos and a white Adi das sport s.h.i.+rt, he remembers the pride on his grandmother's face that night. ”That was a different spiritual world,” Boucher says. ”I saw that world continuing forever.” He tells the story now when asked about the future of the oil sands and his people's place in it.

A poll conducted by the Pembina Inst.i.tute in 2007 found that 71 percent of Albertans favored an idea their government has always rejected out of hand: a moratorium on new oil sands projects until environmental concerns can be resolved. ”It's my belief that when government attempts to manipulate the free market, bad things happen,” Premier Stelmach told a gathering of oil industry executives that year. ”The free-market system will solve this.”

But the free market does not consider the effects of the mines on the river or the forest, or on the people who live there, unless it is forced to. Nor, left to itself, will it consider the effects of the oil sands on climate. Jim Boucher has collaborated with the oil sands industry in order to build a new economy for his people, to replace the one they lost, to provide a new future for kids who no longer hunt ptarmigan in the moonlight. But he is aware of the tradeoffs. ”It's a struggle to balance the needs of today and tomorrow when you look at the environment we're going to live in,” he says. In northern Alberta the question of how to strike that balance has been left to the free market, and its answer has been to forget about tomorrow. Tomorrow is not its job.

MICHAEL SPECTER A Life of Its Own.

FROM The New Yorker.

THE FIRST TIME Jay Keasling remembers hearing the word ”artemisinin,” about a decade ago, he had no idea what it meant. ”Not a clue,” Keasling, a professor of biochemical engineering at the University of California at Berkeley, recalled. Although artemisinin has become the world's most important malaria medicine, Keasling wasn't an expert on infectious diseases. But he happened to be in the process of creating a new discipline, synthetic biology, whicha”by combining elements of engineering, chemistry, computer science, and molecular biologya”seeks to a.s.semble the biological tools necessary to redesign the living world.

Scientists have been manipulating genes for decades; inserting, deleting, and changing them in various microbes has become a routine function in thousands of labs. Keasling and a rapidly growing number of colleagues around the world have something more radical in mind. By using gene-sequence information and synthetic DNA, they are attempting to reconfigure the metabolic pathways of cells to perform entirely new functions, such as manufacturing chemicals and drugs. Eventually, they intend to construct genesa”and new forms of lifea”from scratch. Keasling and others are putting together a kind of foundry of biological componentsa”BioBricks, as Tom Knight, a senior research scientist at Ma.s.sachusetts Inst.i.tute of Technology, who helped invent the field, has named them. Each BioBrick part, made of standardized pieces of DNA, can be used interchangeably to create and modify living cells.

”When your hard drive dies, you can go to the nearest computer store, buy a new one, and swap it out,” Keasling said. ”That's because it's a standard part in a machine. The entire electronics in dustry is based on a plug-and-play mentality. Get a transistor, plug it in, and off you go. What works in one cell phone or laptop should work in another. That is true for almost everything we build: when you go to Home Depot, you don't think about the thread size on the bolts you buy, because they're all made to the same standard. Why shouldn't we use biological parts in the same way?” Keasling and others in the field, who have formed bicoastal cl.u.s.ters in the Bay Area and in Cambridge, Ma.s.sachusetts, see cells as hardware, and genetic code as the software required to make them run. Synthetic biologists are convinced that with enough knowledge, they will be able to write programs to control those genetic components, programs that would let them not only alter nature but guide human evolution as well.

No scientific achievement has promised so much, and none has come with greater risks or clearer possibilities for deliberate abuse. The benefits of new technologiesa”from genetically engineered food to the wonders of pharmaceuticalsa”often have been oversold. If the tools of synthetic biology succeed, though, they could turn specialized molecules into tiny, self-contained factories, creating cheap drugs, clean fuels, and new organisms to siphon carbon dioxide from the atmosphere.

In 2000 Keasling was looking for a chemical compound that could demonstrate the utility of these biological tools. He settled on a diverse cla.s.s of organic molecules known as isoprenoids, which are responsible for the scents, flavors, and even colors in many plants: eucalyptus, ginger, and cinnamon, for example, as well as the yellow in sunflowers and the red in tomatoes. ”One day a graduate student stopped by and said, 'Look at this paper that just came out on amorphadiene synthase,'” Keasling told me as we sat in his office in Emeryville, across the Bay Bridge from San Francisco. He had recently been named CEO of the Department of Energy's new Joint BioEnergy Inst.i.tute, a partners.h.i.+p of three national laboratories and three research universities, led by the Lawrence Berkeley National Laboratory. The consortium's princ.i.p.al goal is to design and manufacture arti ficial fuels that emit little or no greenhouse gasesa”one of President Obama's most frequently cited priorities.

Keasling wasn't sure what to tell his student. ”'Amorphadiene,' I said. 'What's that?' He told me that it was a precursor to artemisinin, an effective antimalarial. I had never worked on malaria. So I got to studying and quickly realized that this precursor was in the general cla.s.s we were planning to investigate. And I thought, amorphadiene is as good a target as any. Let's work on that.”

Malaria infects as many as 500 million of the world's poorest people every year and kills up to 1 million, most of whom are children under the age of five. For centuries, the standard treatment was quinine, and then the chemically related compound chloroquine. At ten cents per treatment, chloroquine was cheap and simple to make, and it saved millions of lives. By the early nineties, however, the most virulent malaria parasitea”Plasmodium falc.i.p.arum a”had grown largely resistant to the drug. Worse, the second line of treatment, sulfadoxine-pyrimethanine, or SP, also failed widely. Artemisinin, when taken in combination with other drugs, has become the only consistently successful treatment that remains. (Reliance on any single drug increases the chances that the malaria parasite will develop resistance.) Known in the West as Artemisia annua, or sweet wormwood, the herb that contains artemisinic acid grows wild in many places, but supplies vary widely and so does the price.

Depending so heavily on artemisinin, while unavoidable, has serious drawbacks: combination therapy costs between ten and twenty times as much as chloroquine, and, despite increasing a.s.sistance from international charities, that is too much money for most Africans or their governments. Artemisinin is not easy to cultivate. Once harvested, the leaves and stems have to be processed rapidly or they will be destroyed by exposure to ultraviolet light. Yields are low, and production is expensive.

Although several thousand Asian and African farmers have begun to plant the herb, the World Health Organization expects that for the next several years the annual demanda”as many as 500 million courses of treatment per yeara”will far exceed the supply. Should that supply disappear, the impact would be incalculable. ”Losing artemisinin would set us back years, if not decades,” Kent Campbell, a former chief of the malaria branch at the Centers for Disease Control and Prevention and director of the Malaria Control Program at the nonprofit health organization PATH, said. ”One can envision any number of theoretical public health disasters in the world. But this is not theoretical. This is real. Without artemisinin, millions of people could die.”

Keasling realized that the tools of synthetic biology, if properly deployed, could dispense with nature entirely, providing an abundant new source of artemisinin. If each cell became its own factory, churning out the chemical required to make the drug, there would be no need for an elaborate and costly manufacturing process, either. Why not try to produce it from genetic parts by constructing a cell to manufacture amorphadiene? Keasling and his team would have to dismantle several different organisms, then use parts from nearly a dozen of their genes to cobble together a custom-built package of DNA. They would then need to construct a new metabolic pathway, the chemical circuitry that a cell needs to do its joba”one that did not exist in the natural world. ”We have got to the point in human history where we simply do not have to accept what nature has given us,” he told me.

By 2003 the team reported its first success, publis.h.i.+ng a paper in Nature Biotechnology that described how the scientists had created that new pathway, by inserting genes from three organisms into E. coli, one of the world's most common bacteria. That research helped Keasling secure a $42.6-million grant from the Bill and Melinda Gates Foundation. Keasling had no interest in simply proving that the science worked; he wanted to do it on a scale that the world could use to fight malaria. ”Making a few micrograms of artemisinin would have been a neat scientific trick,” he said. ”But it doesn't do anybody in Africa any good if all we can do is a cool experiment in a Berkeley lab. We needed to make it on an industrial scale.” To translate the science into a product, Keasling helped start a new company, Amyris Biotechnologies, to refine the raw organism, then figure out how to produce it more efficiently. Within a decade, Amyris had increased the amount of artemisinic acid that each cell could produce by a factor of one million, bringing down the cost of the drug from as much as ten dollars for a course of treatment to less than a dollar.

Amyris then joined with the Inst.i.tute for OneWorld Health, in San Francisco, a nonprofit drug maker, and in 2008 they signed an agreement with the Paris-based pharmaceutical company Sanofi-Aventis to make the drug, which they hope to have on the market by 2012. The scientific response has been reverentiala”their artemisinin has been seen as the first bona fide product of synthetic biology, proof of a principle that we need not rely on the whims of nature to address the world's most pressing crises. But some peo ple wonder what synthetic artemisinin will mean for the thousands of farmers who have begun to plant the wormwood crop. ”What happens to struggling farmers when laboratory vats in California replace farms in Asia and East Africa?” Jim Thomas, a researcher with ETC Group, a technology watchdog based in Canada, asked. Thomas has argued that there has been little discussion of the ethical and cultural implications of altering nature so fundamentally. ”Scientists are making strands of DNA that have never existed,” Thomas said. ”So there is nothing to compare them to. There are no agreed mechanisms for safety, no policies.”

Keasling, too, believes that the nation needs to consider the potential impact of this technology, but he is baffled by opposition to what should soon become the world's most reliable source of cheap artemisinin. ”Just for a moment, imagine that we replaced artemisinin with a cancer drug,” he said. ”And let's have the entire Western world rely on some farmers in China and Africa who may or may not plant their crop. And let's have a lot of American children die because of that. Look at the world and tell me we shouldn't be doing this. It's not people in Africa who see malaria who say, whoa, let's put the brakes on.”

Artemisinin is the first step in what Keasling hopes will become a much larger program. ”We ought to be able to make any compound produced by a plant inside a microbe,” he said. ”We ought to have all these metabolic pathways. You need this drug: OK, we pull this piece, this part, and this one off the shelf. You put them into a microbe, and two weeks later out comes your product.”

That's what Amyris has done in its efforts to develop new fuels. ”Artemisinin is a hydrocarbon, and we built a microbial platform to produce it,” Keasling said. ”We can remove a few of the genes to take out artemisinin and put in a different gene, to make biofuels.” Amyris, led by John Melo, who spent years as a senior executive at British Petroleum, has already engineered three microbes that can convert sugar to fuel. ”We still have lots to learn and lots of problems to solve,” Keasling said. ”I am well aware that makes some people anxious, and I understand why. Anything so powerful and new is troubling. But I don't think the answer to the future is to race into the past.”

For the first 4 billion years, life on Earth was shaped entirely by nature. Propelled by the forces of selection and chance, the most efficient genes survived, and evolution insured that they would thrive. The long, beautiful Darwinian process of creeping forward by trial and error, struggle and survival, persisted for millennia. Then, about 10,000 years ago, our ancestors began to gather in villages, grow crops, and domesticate animals. That led to stone axes and looms, which in turn led to better crops and a varied food supply that could feed a larger civilization. Breeding of goats and pigs gave way to the fabrication of metal and machines. Throughout it all, new species, built on the power of their collected traits, emerged, while others were cast aside.

By the beginning of the twenty-first century, our ability to modify the smallest components of life through molecular biology had endowed humans with a power that even those who exercise it most proficiently cannot claim to fully comprehend. Human mastery over nature has been predicted for centuriesa”Francis Bacon insisted on it, William Blake feared it profoundly. Little more than a hundred years have pa.s.sed, however, since Gregor Mendel demonstrated that the defining characteristics of a pea planta”its shape, its size, and the color of the seeds, for examplea”are transmitted from one generation to the next in ways that can be predicted, repeated, and codified.

Since then, the central project of biology has been to break that code and learn to read ita”to understand how DNA creates and perpetuates life. The physiologist Jacques Loeb considered artificial synthesis of life the goal of biology. In 1912 Loeb, one of the founders of modern biochemistry, wrote that there was no evidence that ”the arti ficial production of living matter is beyond the possibilities of science” and declared, ”We must either succeed in producing living matter artificially, or we must find the reasons why this is impossible.”

In 1946, the n.o.bel Prize-winning geneticist Hermann J. Muller attempted to do that. By demonstrating that exposure to X-rays can cause mutations in the genes and chromosomes of living cells, he was the first to prove that heredity could be affected by something other than natural selection. He wasn't entirely sure that people would use that information responsibly, though. ”If we did attain to any such knowledge or powers, there is no doubt in my mind that we would eventually use them,” Muller said. ”Man is a megalomaniac among animalsa”if he sees mountains he will try to imitate them by pyramids, and if he sees some grand process like evolu tion, and thinks it would be at all possible for him to be in on that game, he would irreverently have to have his whack at that too.”

The theory of evolution explained that every species on Earth is related in some way to every other species; more important, we each carry a record of that history in our body. In 1953 James Watson and Francis Crick began to make it possible to understand why, by explaining how DNA arranges itself. The language of just four chemical lettersa”adenine, cytosine, guanine, and thyminea”comes in the form of enormous chains of nucleotides. When they are joined, the arrangement of their sequences determines how each human differs from all others and from all other living beings.

By the 1970s, recombinant-DNA technology permitted scientists to cut long, unwieldy molecules of nucleotides into digestible sentences of genetic letters and paste them into other cells. Researchers could suddenly combine the genes of two creatures that would never have been able to mate in nature. As promising as these techniques were, they also made it possible for scientists to transfer virusesa”and microbes that cause cancera”from one organism to another. That could create diseases antic.i.p.ated by no one and for which there would be no natural protection, treatment, or cure. In 1975 scientists from around the world gathered at the Asilomar Conference Center, in northern California, to discuss the challenges presented by this new technology. They focused primarily on laboratory and environmental safety and concluded that the field required little regulation. (There was no real discussion of deliberate abusea”at the time, there didn't seem to be any need.) Looking back nearly thirty years later, one of the conference's organizers, the n.o.bel laureate Paul Berg, wrote, ”This unique conference marked the beginning of an exceptional era for science and for the public discussion of science policy. Its success permitted the then contentious technology of recombinant DNA to emerge and flourish. Now the use of the recombinant DNA technology dominates research in biology. It has altered both the way questions are formulated and the way solutions are sought.”

Decoding sequences of DNA was tedious. It could take a scientist a year to complete a stretch that was ten or twelve base pairs long. (Our DNA consists of 3 billion such pairs.) By the late 1980s, automated sequencing had simplified the procedure, and today machines can process that information in seconds. Another new tool a”polymerase chain reactiona”completed the merger of the digital and biological worlds. Using PCR, a scientist can take a single DNA molecule and copy it many times, making it easier to read and to manipulate. That permits scientists to treat living cells like complex packages of digital information that happen to be arranged in the most elegant possible way.

Using such techniques, researchers have now resurrected the DNA of the Tasmanian tiger, the world's largest carnivorous marsupial, which has been extinct for more than seventy years. In 2008 scientists from the University of Melbourne and the University of Texas M. D. Anderson Cancer Center, in Houston, extracted DNA from tissue that had been preserved in the Museum Victoria, in Melbourne. They took a fragment of DNA that controlled the production of a collagen gene from the tiger and inserted it into a mouse embryo. The DNA switched on just the right gene, and the embryo began to churn out collagen. That marked the first time that any material from an extinct creature other than a virus has functioned inside a living organism.

It will not be the last. A team from Pennsylvania State University, working with hair samples from two woolly mammothsa”one of them 60,000 years old and the other 18,000a”has tentatively figured out how to modify that DNA and place it inside an elephant's egg. The mammoth could then be brought to term in an elephant mother. ”There is little doubt that it would be fun to see a living, breathing woolly mammotha”a s.h.a.ggy, elephantine creature with long curved tusks who reminds us more of a very large, cuddly stuffed animal than of a T. Rex.,” the Times editorialized soon after the discovery was announced. ”We're just not sure that it would be all that much fun for the mammoth.”

The ultimate goal, however, is to create a synthetic organism made solely from chemical parts and blueprints of DNA. In the mid-1990s, Craig Venter, working at the Inst.i.tute for Genomic Research, and his colleagues Clyde Hutchison and Hamilton Smith began to wonder whether they could pare life to its most basic components and then use those genes to create such an organism. They began modifying the genome of a tiny bacterium called Mycoplasma genitalium, which contained 482 genes (humans have about 23,000) and 580,000 letters of genetic code, arranged on one circular chromosomea”the smallest genome of any cell that has been grown in laboratory cultures. Venter and his colleagues then re moved genes one by one to find a minimal set that could sustain life.