Part 12 (1/2)

LATERAL UNDERGROUND TRANSPORT.

Inasmuch as the majority of metal mines dip at considerable angles, the useful life of a roadway in a metal mine is very short because particular horizons of ore are soon exhausted. Therefore any method of transport has to be calculated upon a very quick redemption of the capital laid out. Furthermore, a roadway is limited in its daily traffic to the product of the stopes which it serves.

MEN AND ANIMALS.--Some means of transport must be provided, and the basic equipment is light tracks with push-cars, in capacity from half a ton to a ton. The latter load is, however, too heavy to be pushed by one man. As but one car can be pushed at a time, hand-trucking is both slow and expensive. At average American or Australian wages, the cost works out between 25 and 35 cents a ton per mile. An improvement of growing import where hand-trucking is necessary is the overhead mono-rail instead of the track.

If the supply to any particular roadway is such as to fully employ horses or mules, the number of cars per trip can be increased up to seven or eight. In this case the expense, including wages of the men and wear, tear, and care of mules, will work out roughly at from 7 to 10 cents per ton mile. Manifestly, if the ore-supply to a particular roadway is insufficient to keep a mule busy, the economy soon runs off.

MECHANICAL HAULAGE.--Mechanical haulage is seldom applicable to metal mines, for most metal deposits dip at considerable angles, and therefore, unlike most coal-mines, the horizon of haulage must frequently change, and there are no main arteries along which haulage continues through the life of the mine. Any mechanical system entails a good deal of expense for installation, and the useful life of any particular roadway, as above said, is very short. Moreover, the crooked roadways of most metal mines present difficulties of negotiation not to be overlooked. In order to use such systems it is necessary to condense the haulage to as few roadways as possible.

Where the tonnage on one level is not sufficient to warrant other than men or animals, it sometimes pays (if the dip is steep enough) to dump everything through winzes from one to two levels to a main road below where mechanical equipment can be advantageously provided.

The cost of shaft-winding the extra depth is inconsiderable compared to other factors, for the extra vertical distance of haulage can be done at a cost of one or two cents per ton mile. Moreover, from such an arrangement follows the concentration of shaft-bins, and of shaft labor, and winding is accomplished without so much s.h.i.+fting as to horizon, all of which economies equalize the extra distance of the lift.

There are three princ.i.p.al methods of mechanical transport in use:--

1. Cable-ways.

2. Compressed-air locomotives.

3. Electrical haulage.

Cable-ways or endless ropes are expensive to install, and to work to the best advantage require double tracks and fairly straight roads. While they are economical in operation and work with little danger to operatives, the limitations mentioned preclude them from adoption in metal mines, except in very special circ.u.mstances such as main crosscuts or adit tunnels, where the haulage is straight and concentrated from many sources of supply.

Compressed-air locomotives are somewhat heavy and c.u.mbersome, and therefore require well-built tracks with heavy rails, but they have very great advantages for metal mine work. They need but a single track and are of low initial cost where compressed air is already a requirement of the mine. No subsidiary line equipment is needed, and thus they are free to traverse any road in the mine and can be readily s.h.i.+fted from one level to another. Their mechanical efficiency is not so low in the long run as might appear from the low efficiency of pneumatic machines generally, for by storage of compressed air at the charging station a more even rate of energy consumption is possible than in the constant cable and electrical power supply which must be equal to the maximum demand, while the air-plant consumes but the average demand.

Electrical haulage has the advantage of a much more compact locomotive and the drawback of more expensive track equipment, due to the necessity of transmission wire, etc. It has the further disadvantages of uselessness outside the equipped haulage way and of the dangers of the live wire in low and often wet tunnels.

In general, compressed-air locomotives possess many attractions for metal mine work, where air is in use in any event and where any mechanical system is at all justified. Any of the mechanical systems where tonnage is sufficient in quant.i.ty to justify their employment will handle material for from 1.5 to 4 cents per ton mile.

TRACKS.--Tracks for hand, mule, or rope haulage are usually built with from 12- to 16-pound rails, but when compressed-air or electrical locomotives are to be used, less than 24-pound rails are impossible.

As to tracks in general, it may be said that careful laying out with even grades and gentle curves repays itself many times over in their subsequent operation. Further care in repair and lubrication of cars will often make a difference of 75% in the track resistance.

TRANSPORT IN STOPES.--Owing to the even shorter life of individual stopes than levels, the actual transport of ore or waste in them is often a function of the aboriginal shovel plus gravity. As shoveling is the most costly system of transport known, any means of stoping that decreases the need for it has merit. Shrinkage-stoping eliminates it altogether. In the other methods, gravity helps in proportion to the steepness of the dip. When the underlie becomes too flat for the ore to ”run,” transport can sometimes be helped by pitching the ore-pa.s.ses at a steeper angle than the dip (Fig. 36). In some cases of flat deposits, crosscuts into the walls, or even levels under the ore-body, are justifiable. The more numerous the ore-pa.s.ses, the less the lateral shoveling, but as pa.s.ses cost money for construction and for repair, there is a nice economic balance in their frequency.

Mechanical haulage in stopes has been tried and finds a field under some conditions. In dips under 25 and possessing fairly sound hanging-wall, where long-wall or flat-back cuts are employed, temporary tracks can often be laid in the stopes and the ore run in cars to the main pa.s.ses. In such cases, the tracks are pushed up close to the face after each cut. Further self-acting inclines to lower cars to the levels can sometimes be installed to advantage. This arrangement also permits greater intervals between levels and less number of ore-pa.s.ses. For dips between 25 and 50 where the mine is worked without stope support or with occasional pillars, a very useful contrivance is the sheet-iron trough--about eighteen inches wide and six inches deep--made in sections ten or twelve feet long and readily bolted together. In dips 35 to 50 this trough, laid on the foot-wall, gives a sufficiently smooth surface for the ore to run upon. When the dip is flat, the trough, if hung from plugs in the hanging-wall, may be swung backward and forward. The use of this ”b.u.mping-trough” saves much shoveling. For handling filling or ore in flat runs it deserves wider adoption. It is, of course, inapplicable in pa.s.ses as a ”b.u.mping-trough,” but can be fixed to give smooth surface. In flat mines it permits a wider interval between levels and therefore saves development work. The life of this contrivance is short when used in open stopes, owing to the dangers of bombardment from blasting.

In dips steeper than 50 much of the shoveling into pa.s.ses can be saved by rill-stoping, as described on page 100. Where flat-backed stopes are used in wide ore-bodies with filling, temporary tracks laid on the filling to the ore-pa.s.ses are useful, for they permit wider intervals between pa.s.ses.

In that underground engineer's paradise, the Wit.w.a.tersrand, where the stopes require neither timber nor filling, the long, moderately pitched openings lend themselves particularly to the swinging iron troughs, and even endless wire ropes have been found advantageous in certain cases.

Where the roof is heavy and close support is required, and where the deposits are very irregular in shape and dip, there is little hope of mechanical a.s.sistance in stope transport.

CHAPTER XIII.

Mechanical Equipment. (_Continued_).

DRAINAGE: CONTROLLING FACTORS; VOLUME AND HEAD OF WATER; FLEXIBILITY; RELIABILITY; POWER CONDITIONS; MECHANICAL EFFICIENCY; CAPITAL OUTLAY.

SYSTEMS OF DRAINAGE,--STEAM PUMPS, COMPRESSED-AIR PUMPS, ELECTRICAL PUMPS, ROD-DRIVEN PUMPS, BAILING; COMPARATIVE VALUE OF VARIOUS SYSTEMS.

With the exception of drainage tunnels--more fully described in Chapter VIII--all drainage must be mechanical. As the bulk of mine water usually lies near the surface, saving in pumping can sometimes be effected by leaving a complete pillar of ore under some of the upper levels. In many deposits, however, the ore has too many channels to render this of much avail.

There are six factors which enter into a determination of mechanical drainage systems for metal mines:--

1. Volume and head of water.