Part 6 (2/2)
Physics is experience, arranged in economical order. By this order not only is a broad and comprehensive view of what we have rendered possible, but also the defects and the needful alterations are made manifest, exactly as in a well-kept household. Physics shares with mathematics the advantages of succinct description and of brief, compendious definition, which precludes confusion, even in ideas where, with no apparent burdening of the brain, hosts of others are contained. Of these ideas the rich contents can be produced at any moment and displayed in their full perceptual light. Think of the swarm of well-ordered notions pent up in the idea of the potential. Is it wonderful that ideas containing so much finished labor should be easy to work with?
Our first knowledge, thus, is a product of the economy of self-preservation. By communication, the experience of many persons, individually acquired at first, is collected in one. The communication of knowledge and the necessity which every one feels of managing his stock of experience with the least expenditure of thought, compel us to put our knowledge in economical forms. But here we have a clue which strips science of all its mystery, and shows us what its power really is. With respect to specific results it yields us nothing that we could not reach in a sufficiently long time without methods. There is no problem in all mathematics that cannot be solved by direct counting. But with the present implements of mathematics many operations of counting can be performed in a few minutes which without mathematical methods would take a lifetime. Just as a single human being, restricted wholly to the fruits of his own labor, could never ama.s.s a fortune, but on the contrary the acc.u.mulation of the labor of many men in the hands of one is the foundation of wealth and power, so, also, no knowledge worthy of the name can be gathered up in a single human mind limited to the span of a human life and gifted only with finite powers, except by the most exquisite economy of thought and by the careful ama.s.sment of the economically ordered experience of thousands of co-workers. What strikes us here as the fruits of sorcery are simply the rewards of excellent housekeeping, as are the like results in civil life. But the business of science has this advantage over every other enterprise, that from its ama.s.sment of wealth no one suffers the least loss. This, too, is its blessing, its freeing and saving power.
The recognition of the economical character of science will now help us, perhaps, to understand better certain physical notions.
Those elements of an event which we call ”cause and effect” are certain salient features of it, which are important for its mental reproduction. Their importance wanes and the attention is transferred to fresh characters the moment the event or experience in question becomes familiar. If the connexion of such features strikes us as a necessary one, it is simply because the interpolation of certain intermediate links with which we are very familiar, and which possess, therefore, higher authority for us, is often attended with success in our explanations. That ready experience fixed in the mosaic of the mind with which we meet new events, Kant calls an innate concept of the understanding (Verstandesbegriff).
The grandest principles of physics, resolved into their elements, differ in no wise from the descriptive principles of the natural historian. The question, ”Why?” which is always appropriate where the explanation of a contradiction is concerned, like all proper habitudes of thought, can overreach itself and be asked where nothing remains to be understood. Suppose we were to attribute to nature the property of producing like effects in like circ.u.mstances; just these like circ.u.mstances we should not know how to find. Nature exists once only. Our schematic mental imitation alone produces like events. Only in the mind, therefore, does the mutual dependence of certain features exist.
All our efforts to mirror the world in thought would be futile if we found nothing permanent in the varied changes of things. It is this that impels us to form the notion of substance, the source of which is not different from that of the modern ideas relative to the conservation of energy. The history of physics furnishes numerous examples of this impulse in almost all fields, and pretty examples of it may be traced back to the nursery. ”Where does the light go to when it is put out?” asks the child. The sudden shrivelling up of a hydrogen balloon is inexplicable to a child; it looks everywhere for the large body which was just there but is now gone.
Where does heat come from? Where does heat go to? Such childish questions in the mouths of mature men shape the character of a century.
In mentally separating a body from the changeable environment in which it moves, what we really do is to extricate a group of sensations on which our thoughts are fastened and which is of relatively greater stability than the others, from the stream of all our sensations. Absolutely unalterable this group is not. Now this, now that member of it appears and disappears, or is altered. In its full ident.i.ty it never recurs. Yet the sum of its constant elements as compared with the sum of its changeable ones, especially if we consider the continuous character of the transition, is always so great that for the purpose in hand the former usually appear sufficient to determine the body's ident.i.ty. But because we can separate from the group every single member without the body's ceasing to be for us the same, we are easily led to believe that after abstracting all the members something additional would remain. It thus comes to pa.s.s that we form the notion of a substance distinct from its attributes, of a thing-in-itself, whilst our sensations are regarded merely as symbols or indications of the properties of this thing-in-itself. But it would be much better to say that bodies or things are compendious mental symbols for groups of sensations--symbols that do not exist outside of thought. Thus, the merchant regards the labels of his boxes merely as indexes of their contents, and not the contrary. He invests their contents, not their labels, with real value. The same economy which induces us to a.n.a.lyse a group and to establish special signs for its component parts, parts which also go to make up other groups, may likewise induce us to mark out by some single symbol a whole group.
On the old Egyptian monuments we see objects represented which do not reproduce a single visual impression, but are composed of various impressions. The heads and the legs of the figures appear in profile, the head-dress and the breast are seen from the front, and so on. We have here, so to speak, a mean view of the objects, in forming which the sculptor has retained what he deemed essential, and neglected what he thought indifferent. We have living exemplifications of the processes put into stone on the walls of these old temples, in the drawings of our children, and we also observe a faithful a.n.a.logue of them in the formation of ideas in our own minds. Only in virtue of some such facility of view as that indicated, are we allowed to speak of a body. When we speak of a cube with trimmed corners--a figure which is not a cube--we do so from a natural instinct of economy, which prefers to add to an old familiar conception a correction instead of forming an entirely new one. This is the process of all judgment.
The crude notion of ”body” can no more stand the test of a.n.a.lysis than can the art of the Egyptians or that of our little children. The physicist who sees a body flexed, stretched, melted, and vaporised, cuts up this body into smaller permanent parts; the chemist splits it up into elements. Yet even an element is not unalterable. Take sodium. When warmed, the white, silvery ma.s.s becomes a liquid, which, when the heat is increased and the air shut out, is transformed into a violet vapor, and on the heat being still more increased glows with a yellow light. If the name sodium is still retained, it is because of the continuous character of the transitions and from a necessary instinct of economy. By condensing the vapor, the white metal may be made to reappear. Indeed, even after the metal is thrown into water and has pa.s.sed into sodium hydroxide, the vanished properties may by skilful treatment still be made to appear; just as a moving body which has pa.s.sed behind a column and is lost to view for a moment may make its appearance after a time. It is unquestionably very convenient always to have ready the name and thought for a group of properties wherever that group by any possibility can appear. But more than a compendious economical symbol for these phenomena, that name and thought is not. It would be a mere empty word for one in whom it did not awaken a large group of well-ordered sense-impressions. And the same is true of the molecules and atoms into which the chemical element is still further a.n.a.lysed.
True, it is customary to regard the conservation of weight, or, more precisely, the conservation of ma.s.s, as a direct proof of the constancy of matter. But this proof is dissolved, when we go to the bottom of it, into such a mult.i.tude of instrumental and intellectual operations, that in a sense it will be found to const.i.tute simply an equation which our ideas in imitating facts have to satisfy. That obscure, mysterious lump which we involuntarily add in thought, we seek for in vain outside the mind.
It is always, thus, the crude notion of substance that is slipping unnoticed into science, proving itself constantly insufficient, and ever under the necessity of being reduced to smaller and smaller world-particles. Here, as elsewhere, the lower stage is not rendered indispensable by the higher which is built upon it, no more than the simplest mode of locomotion, walking, is rendered superfluous by the most elaborate means of transportation. Body, as a compound of light and touch sensations, knit together by sensations of s.p.a.ce, must be as familiar to the physicist who seeks it, as to the animal who hunts its prey. But the student of the theory of knowledge, like the geologist and the astronomer, must be permitted to reason back from the forms which are created before his eyes to others which he finds ready made for him.
All physical ideas and principles are succinct directions, frequently involving subordinate directions, for the employment of economically cla.s.sified experiences, ready for use. Their conciseness, as also the fact that their contents are rarely exhibited in full, often invests them with the semblance of independent existence. Poetical myths regarding such ideas,--for example, that of Time, the producer and devourer of all things,--do not concern us here. We need only remind the reader that even Newton speaks of an absolute time independent of all phenomena, and of an absolute s.p.a.ce--views which even Kant did not shake off, and which are often seriously entertained to-day. For the natural inquirer, determinations of time are merely abbreviated statements of the dependence of one event upon another, and nothing more. When we say the acceleration of a freely falling body is 9810 metres per second, we mean the velocity of the body with respect to the centre of the earth is 9810 metres greater when the earth has performed an additional 86400th part of its rotation--a fact which itself can be determined only by the earth's relation to other heavenly bodies. Again, in velocity is contained simply a relation of the position of a body to the position of the earth.[65] Instead of referring events to the earth we may refer them to a clock, or even to our internal sensation of time. Now, because all are connected, and each may be made the measure of the rest, the illusion easily arises that time has significance independently of all.[66]
The aim of research is the discovery of the equations which subsist between the elements of phenomena. The equation of an ellipse expresses the universal conceivable relation between its co-ordinates, of which only the real values have geometrical significance. Similarly, the equations between the elements of phenomena express a universal, mathematically conceivable relation. Here, however, for many values only certain directions of change are physically admissible. As in the ellipse only certain values satisfying the equation are realised, so in the physical world only certain changes of value occur. Bodies are always accelerated towards the earth. Differences of temperature, left to themselves, always grow less; and so on. Similarly, with respect to s.p.a.ce, mathematical and physiological researches have shown that the s.p.a.ce of experience is simply an actual case of many conceivable cases, about whose peculiar properties experience alone can instruct us. The elucidation which this idea diffuses cannot be questioned, despite the absurd uses to which it has been put.
Let us endeavor now to summarise the results of our survey. In the economical schematism of science lie both its strength and its weakness. Facts are always represented at a sacrifice of completeness and never with greater precision than fits the needs of the moment. The incongruence between thought and experience, therefore, will continue to subsist as long as the two pursue their course side by side; but it will be continually diminished.
In reality, the point involved is always the completion of some partial experience; the derivation of one portion of a phenomenon from some other. In this act our ideas must be based directly upon sensations. We call this measuring.[67] The condition of science, both in its origin and in its application, is a great relative stability of our environment. What it teaches us is interdependence. Absolute forecasts, consequently, have no significance in science. With great changes in celestial s.p.a.ce we should lose our co-ordinate systems of s.p.a.ce and time.
When a geometer wishes to understand the form of a curve, he first resolves it into small rectilinear elements. In doing this, however, he is fully aware that these elements are only provisional and arbitrary devices for comprehending in parts what he cannot comprehend as a whole. When the law of the curve is found he no longer thinks of the elements. Similarly, it would not become physical science to see in its self-created, changeable, economical tools, molecules and atoms, realities behind phenomena, forgetful of the lately acquired sapience of her older sister, philosophy, in subst.i.tuting a mechanical mythology for the old animistic or metaphysical scheme, and thus creating no end of suppositious problems. The atom must remain a tool for representing phenomena, like the functions of mathematics. Gradually, however, as the intellect, by contact with its subject-matter, grows in discipline, physical science will give up its mosaic play with stones and will seek out the boundaries and forms of the bed in which the living stream of phenomena flows. The goal which it has set itself is the simplest and most economical abstract expression of facts.
The question now remains, whether the same method of research which till now we have tacitly restricted to physics, is also applicable in the psychical domain. This question will appear superfluous to the physical inquirer. Our physical and psychical views spring in exactly the same manner from instinctive knowledge. We read the thoughts of men in their acts and facial expressions without knowing how. Just as we predict the behavior of a magnetic needle placed near a current by imagining AmpAre's swimmer in the current, similarly we predict in thought the acts and behavior of men by a.s.suming sensations, feelings, and wills similar to our own connected with their bodies. What we here instinctively perform would appear to us as one of the subtlest achievements of science, far outstripping in significance and ingenuity AmpAre's rule of the swimmer, were it not that every child unconsciously accomplished it. The question simply is, therefore, to grasp scientifically, that is, by conceptional thought, what we are already familiar with from other sources. And here much is to be accomplished. A long sequence of facts is to be disclosed between the physics of expression and movement and feeling and thought.
We hear the question, ”But how is it possible to explain feeling by the motions of the atoms of the brain?” Certainly this will never be done, no more than light or heat will ever be deduced from the law of refraction. We need not deplore, therefore, the lack of ingenious solutions of this question. The problem is not a problem. A child looking over the walls of a city or of a fort into the moat below sees with astonishment living people in it, and not knowing of the portal which connects the wall with the moat, cannot understand how they could have got down from the high ramparts. So it is with the notions of physics. We cannot climb up into the province of psychology by the ladder of our abstractions, but we can climb down into it.
Let us look at the matter without bias. The world consists of colors, sounds, temperatures, pressures, s.p.a.ces, times, and so forth, which now we shall not call sensations, nor phenomena, because in either term an arbitrary, one-sided theory is embodied, but simply elements. The fixing of the flux of these elements, whether mediately or immediately, is the real object of physical research. As long as, neglecting our own body, we employ ourselves with the interdependence of those groups of elements which, including men and animals, make up foreign bodies, we are physicists. For example, we investigate the change of the red color of a body as produced by a change of illumination. But the moment we consider the special influence on the red of the elements const.i.tuting our body, outlined by the well-known perspective with head invisible, we are at work in the domain of physiological psychology. We close our eyes, and the red together with the whole visible world disappears. There exists, thus, in the perspective field of every sense a portion which exercises on all the rest a different and more powerful influence than the rest upon one another. With this, however, all is said. In the light of this remark, we call all elements, in so far as we regard them as dependent on this special part (our body), sensations. That the world is our sensation, in this sense, cannot be questioned. But to make a system of conduct out of this provisional conception, and to abide its slaves, is as unnecessary for us as would be a similar course for a mathematician who, in varying a series of variables of a function which were previously a.s.sumed to be constant, or in interchanging the independent variables, finds his method to be the source of some very surprising ideas for him.[68]
If we look at the matter in this unbia.s.sed light it will appear indubitable that the method of physiological psychology is none other than that of physics; what is more, that this science is a part of physics. Its subject-matter is not different from that of physics. It will unquestionably determine the relations the sensations bear to the physics of our body. We have already learned from a member of this academy (Hering) that in all probability a sixfold manifoldness of the chemical processes of the visual substance corresponds to the sixfold manifoldness of color-sensation, and a threefold manifoldness of the physiological processes to the threefold manifoldness of s.p.a.ce-sensations. The paths of reflex actions and of the will are followed up and disclosed; it is ascertained what region of the brain subserves the function of speech, what region the function of locomotion, etc. That which still clings to our body, namely, our thoughts, will, when those investigations are finished, present no difficulties new in principle. When experience has once clearly exhibited these facts and science has marshalled them in economic and perspicuous order, there is no doubt that we shall understand them. For other ”understanding” than a mental mastery of facts never existed. Science does not create facts from facts, but simply orders known facts.
Let us look, now, a little more closely into the modes of research of physiological psychology. We have a very clear idea of how a body moves in the s.p.a.ce encompa.s.sing it. With our optical field of sight we are very familiar. But we are unable to state, as a rule, how we have come by an idea, from what corner of our intellectual field of sight it has entered, or by what region the impulse to a motion is sent forth. Moreover, we shall never get acquainted with this mental field of view from self-observation alone. Self-observation, in conjunction with physiological research, which seeks out physical connexions, can put this field of vision in a clear light before us, and will thus first really reveal to us our inner man.
Primarily, natural science, or physics, in its widest sense, makes us acquainted with only the firmest connexions of groups of elements. Provisorily, we may not bestow too much attention on the single const.i.tuents of those groups, if we are desirous of retaining a comprehensible whole. Instead of equations between the primitive variables, physics gives us, as much the easiest course, equations between functions of those variables. Physiological psychology teaches us how to separate the visible, the tangible, and the audible from bodies--a labor which is subsequently richly requited, as the division of the subjects of physics well shows. Physiology further a.n.a.lyses the visible into light and s.p.a.ce sensations; the first into colors, the last also into their component parts; it resolves noises into sounds, these into tones, and so on. Unquestionably this a.n.a.lysis can be carried much further than it has been. It will be possible in the end to exhibit the common elements at the basis of very abstract but definite logical acts of like form,--elements which the acute jurist and mathematician, as it were, feels out, with absolute certainty, where the uninitiated hears only empty words. Physiology, in a word, will reveal to us the true real elements of the world. Physiological psychology bears to physics in its widest sense a relation similar to that which chemistry bears to physics in its narrowest sense. But far greater than the mutual support of physics and chemistry will be that which natural science and psychology will render each other. And the results that shall spring from this union will, in all likelihood, far outstrip those of the modern mechanical physics.
What those ideas are with which we shall comprehend the world when the closed circuit of physical and psychological facts shall lie complete before us, (that circuit of which we now see only two disjoined parts,) cannot be foreseen at the outset of the work. The men will be found who will see what is right and will have the courage, instead of wandering in the intricate paths of logical and historical accident, to enter on the straight ways to the heights from which the mighty stream of facts can be surveyed. Whether the notion which we now call matter will continue to have a scientific significance beyond the crude purposes of common life, we do not know. But we certainly shall wonder how colors and tones which were such innermost parts of us could suddenly get lost in our physical world of atoms; how we could be suddenly surprised that something which outside us simply clicked and beat, in our heads should make light and music; and how we could ask whether matter can feel, that is to say, whether a mental symbol for a group of sensations can feel?
We cannot mark out in hard and fast lines the science of the future, but we can foresee that the rigid walls which now divide man from the world will gradually disappear; that human beings will not only confront each other, but also the entire organic and so-called lifeless world, with less selfishness and with livelier sympathy. Just such a presentiment as this perhaps possessed the great Chinese philosopher Licius some two thousand years ago when, pointing to a heap of mouldering human bones, he said to his scholars in the rigid, lapidary style of his tongue: ”These and I alone have the knowledge that we neither live nor are dead.”
FOOTNOTES: [Footnote 60: An address delivered before the anniversary meeting of the Imperial Academy of Sciences, at Vienna, May 25, 1882.]
[Footnote 61: Primitive Culture.]
[Footnote 62: Tylor, loc. cit.]
[Footnote 63: Essai philosophique sur les probabilitAs. 6th Ed. Paris, 1840, p. 4. The necessary consideration of the initial velocities is lacking in this formulation.]
[Footnote 64: Principien der Wirthschaftslehre, Vienna, 1873.]
[Footnote 65: It is clear from this that all so-called elementary (differential) laws involve a relation to the whole.]
[Footnote 66: If it be objected, that in the case of perturbations of the velocity of rotation of the earth, we could be sensible of such perturbations, and being obliged to have some measure of time, we should resort to the period of vibration of the waves of sodium light,--all that this would show is that for practical reasons we should select that event which best served us as the simplest common measure of the others.]
[Footnote 67: Measurement, in fact, is the definition of one phenomenon by another (standard) phenomenon.]
[Footnote 68: I have represented the point of view here taken for more than thirty years and developed it in various writings (Erhaltung der Arbeit, 1872, parts of which are published in the article on The Conservation of Energy in this collection; The Forms of Liquids, 1872, also published in this collection; and the Bewegungsempfindungen, 1875). The idea, though known to philosophers, is unfamiliar to the majority of physicists. It is a matter of deep regret to me, therefore, that the t.i.tle and author of a small tract which accorded with my views in numerous details and which I remember having caught a glance of in a very busy period (1879-1880), have so completely disappeared from my memory that all efforts to obtain a clue to them have hitherto been fruitless.]
ON TRANSFORMATION AND ADAPTATION IN SCIENTIFIC THOUGHT.[69]
It was towards the close of the sixteenth century that Galileo with a superb indifference to the dialectic arts and sophistic subtleties of the Schoolmen of his time, turned the attention of his brilliant mind to nature. By nature his ideas were transformed and released from the fetters of inherited prejudice. At once the mighty revolution was felt, that was therewith effected in the realm of human thought--felt indeed in circles far remote and wholly unrelated to the sphere of science, felt in strata of society that hitherto had only indirectly recognised the influence of scientific thought.
And how great and how far-reaching that revolution was! From the beginning of the seventeenth century till its close we see arising, at least in embryo, almost all that plays a part in the natural and technical science of to-day, almost all that in the two centuries following so wonderfully transformed the facial appearance of the earth, and all that is moving onward in process of such mighty evolution to-day. And all this, the direct result of Galilean ideas, the direct outcome of that freshly awakened sense for the investigation of natural phenomena which taught the Tuscan philosopher to form the concept and the law of falling bodies from the observation of a falling stone! Galileo began his investigations without an implement worthy of the name; he measured time in the most primitive way, by the efflux of water. Yet soon afterwards the telescope, the microscope, the barometer, the thermometer, the air-pump, the steam engine, the pendulum, and the electrical machine were invented in rapid succession. The fundamental theorems of dynamical science, of optics, of heat, and of electricity were all disclosed in the century that followed Galileo.
Of scarcely less importance, it seems, was that movement which was prepared for by the ill.u.s.trious biologists of the hundred years just past, and formally begun by the late Mr. Darwin. Galileo quickened the sense for the simpler phenomena of inorganic nature. And with the same simplicity and frankness that marked the efforts of Galileo, and without the aid of technical or scientific instruments, without physical or chemical experiment, but solely by the power of thought and observation, Darwin grasps a new property of organic nature--which we may briefly call its plasticity.[70] With the same directness of purpose, Darwin, too, pursues his way. With the same candor and love of truth, he points out the strength and the weakness of his demonstrations. With masterly equanimity he holds aloof from the discussion of irrelevant subjects and wins alike the admiration of his adherents and of his adversaries.
Scarcely thirty years have elapsed[71] since Darwin first propounded the principles of his theory of evolution. Yet, already we see his ideas firmly rooted in every branch of human thought, however remote. Everywhere, in history, in philosophy, even in the physical sciences, we hear the watchwords: heredity, adaptation, selection. We speak of the struggle for existence among the heavenly bodies and of the struggle for existence in the world of molecules.[72]
The impetus given by Galileo to scientific thought was marked in every direction; thus, his pupil, Borelli, founded the school of exact medicine, from whence proceeded even distinguished mathematicians. And now Darwinian ideas, in the same way, are animating all provinces of research. It is true, nature is not made up of two distinct parts, the inorganic and the organic; nor must these two divisions be treated perforce by totally distinct methods. Many sides, however, nature has. Nature is like a thread in an intricate tangle, which must be followed and traced, now from this point, now from that. But we must never imagine,--and this physicists have learned from Faraday and J. R. Mayer,--that progress along paths once entered upon is the only means of reaching the truth.
It will devolve upon the specialists of the future to determine the relative tenability and fruitfulness of the Darwinian ideas in the different provinces. Here I wish simply to consider the growth of natural knowledge in the light of the theory of evolution. For knowledge, too, is a product of organic nature. And although ideas, as such, do not comport themselves in all respects like independent organic individuals, and although violent comparisons should be avoided, still, if Darwin reasoned rightly, the general imprint of evolution and transformation must be noticeable in ideas also.
I shall waive here the consideration of the fruitful topic of the transmission of ideas or rather of the transmission of the apt.i.tude for certain ideas.[73] Nor would it come within my province to discuss psychical evolution in any form, as Spencer[74] and many other modern psychologists have done, with varying success. Neither shall I enter upon a discussion of the struggle for existence and of natural selection among scientific theories.[75] We shall consider here only such processes of transformation as every student can easily observe in his own mind.
The child of the forest picks out and pursues with marvellous acuteness the trails of animals. He outwits and overreaches his foes with surpa.s.sing cunning. He is perfectly at home in the sphere of his peculiar experience. But confront him with an unwonted phenomenon; place him face to face with a technical product of modern civilisation, and he will lapse into impotency and helplessness. Here are facts which he does not comprehend. If he endeavors to grasp their meaning, he misinterprets them. He fancies the moon, when eclipsed, to be tormented by an evil spirit. To his mind a puffing locomotive is a living monster. The letter accompanying a commission with which he is entrusted, having once revealed his thievishness, is in his imagination a conscious being, which he must hide beneath a stone, before venturing to commit a fresh trespa.s.s. Arithmetic to him is like the art of the geomancers in the Arabian Nights,--an art which is able to accomplish every imaginable impossibility. And, like Voltaire's ingAnu, when placed in our social world, he plays, as we think, the maddest pranks.
With the man who has made the achievements of modern science and civilisation his own, the case is quite different. He sees the moon pa.s.s temporarily into the shadow of the earth. He feels in his thoughts the water growing hot in the boiler of the locomotive; he feels also the increase of the tension which pushes the piston forward. Where he is not able to trace the direct relation of things he has recourse to his yard-stick and table of logarithms, which aid and facilitate his thought without predominating over it. Such opinions as he cannot concur in, are at least known to him, and he knows how to meet them in argument.
Now, wherein does the difference between these two men consist? The train of thought habitually employed by the first one does not correspond to the facts that he sees. He is surprised and nonplussed at every step. But the thoughts of the second man follow and antic.i.p.ate events, his thoughts have become adapted or accommodated to the larger field of observation and activity in which he is located; he conceives things as they are. The Indian's sphere of experience, however, is quite different; his bodily organs of sense are in constant activity; he is ever intensely alert and on the watch for his foes; or, his entire attention and energy are engaged in procuring sustenance. Now, how can such a creature project his mind into futurity, foresee or prophesy? This is not possible until our fellow-beings have, in a measure, relieved us of our concern for existence. It is then that we acquire freedom for observation, and not infrequently too that narrowness of thought which society helps and teaches us to disregard.
<script>