Part 11 (2/2)

[Ill.u.s.tration: C.L. Sholes.]

A great many men contributed to make the typewriter what it is to-day--as much of an improvement upon the pen as the sewing-machine is upon the needle. So long ago as 1843 some patents were taken out for divers forms of writing-machines, all more or less impracticable. It was not until C.L. Sholes, then of Wisconsin, took up the problem, in 1866, that the present form of a number of type-bars, arranged so that their ends strike upon a common centre, was devised. Sholes died in 1890, having also helped by many minor devices the increase in the use of writing-machines. From 1865 to 1873 he made thirty different working models of writing-machines, devoting himself to the task almost day and night for eight years.

B.B. HOTCHKISS AND HIS GUNS.

[Ill.u.s.tration: B.B. Hotchkiss.]

American inventors have had, as a rule, but small success in making Europe see the value of their inventions before this country has proved it. Morse could get neither England nor France to take an interest in his telegraph schemes, and, at a later day, Bell's telephone was received in England as a curious device, but not worth investing money in. An exception to this rule may be found, however, in the case of B.B.

Hotchkiss, a Connecticut inventor, who during the civil war conceived the idea of a breech-loading cannon. In 1869 Hotchkiss mounted one of his small guns in the Brooklyn Navy-yard, but found no encouragement to experiment further. The Franco-German war found him in Europe with a breech-loading gun that would throw sh.e.l.ls. His success was such that there is not a civilized country where Hotchkiss guns, throwing light sh.e.l.ls with a rapidity not dreamed of years ago, are not now in use.

The inventor has made a large fortune and has had the pleasure of sending to this country a number of guns for our cruisers, the Atlanta, the Boston, the Chicago, and the Dolphin. So great is the rapidity, accuracy, and power of these Hotchkiss rapid-fire guns that some experts expect to see two-thirds of an action fought with these or similar pieces, which they think will silence and put out of action all the heavy guns in a few minutes after the enemies come within fifteen hundred yards of each other. For instance, the latest piece is a six-pounder, which, with smokeless powder, has a range of five thousand yards and an effective fighting range of one thousand yards, within which distance a target the size of a six-inch gun can be hit nearly every time and five inches of wrought iron perforated. A speed in firing of twenty-five shots a minute has been attained.

CHARLES F. BRUSH AND THE DYNAMO.

A trifling incident revealed to an Italian savant the fact that when two metals and the leg of a frog came into contact the muscles of the leg contracted. The galvanic battery resulted. Years later another observer discovered that if a wire carrying a current of electricity was wound around a piece of soft iron the latter became a magnet. Out of these simple discoveries have arisen the telegraph, the telephone, and a host of inventions depending upon electricity. And to-day, with all the wonders accomplished in this field, we are yet upon the threshold of the enchanted palace that electricity is about to open to us. Through its aid we shall one day enjoy light, heat, and power almost as freely as we now enjoy air. The crops will be planted, watered, cultivated, gathered, and transported to the uttermost ends of the earth by electricity. The steam-engine is said to do the work of two hundred million men, and to have been the chief agent in reducing the average working hours of men in the civilized world in this century from fourteen hours a day to ten.

But electricity, according to even conservative judges, will accomplish infinitely more. It will make possible the harnessing of vast forces of nature, such as the falls of Niagara, because the electric current can be transported from place to place at small cost and it is easily transformed into light or power or heat. Within a few months we shall see the first results of the great work at Niagara. Before many years the power of the tides is certain to be used along the seaboard for producing electricity. Here is a force equal to that of a million Niagaras going to waste.

[Ill.u.s.tration: Charles F. Brush.]

The late Clerk Maxwell, when asked by a distinguished scientist what was the greatest scientific discovery of the last half-century, replied: ”That the Gramme machine is reversible.” In other words, that power will not only produce electricity, but that electricity will produce power.

By turning a big wheel at Niagara we can produce an electric current that will turn another wheel for us fifty, or perhaps five hundred miles away. The dynamo is one of the great achievements of the day to which Charles F. Brush, of Cleveland, O., has devoted himself with much signal success. Brush was born in March, 1849, in Euclid Towns.h.i.+p near Cleveland, and his early years were spent on his father's farm. When fourteen years old he went to the public school at Collamer, and later to the Cleveland High-school, and as early as 1862 distinguished himself by making magnetic machines and batteries for the high-school. During his senior year in the high-school, the chemical and physical apparatus of the laboratory of the school was placed under his charge. In this year he constructed an electric motor having its field magnets as well as its armature excited by the electric current. He also constructed a microscope and a telescope, making all the parts himself, down to the grinding of the lenses. He devised an apparatus for turning on the gas in the street-lamps of Cleveland, lighting it and turning it off again.

When he was eighteen years of age he entered Michigan University at Ann Arbor, and, following his particular bent, was graduated as a mining engineer in 1869, one year ahead of his cla.s.s. Returning to Cleveland he began work as an a.n.a.lytical chemist and soon became interested in the iron business. In 1875 Brush's attention was first called to electricity by George W. Stockly, who suggested that there was an immense field ready for a cheaper and more easily managed dynamo than the Gramme or Siemens, the best types then known. Stockly, who was interested in the Telegraph Supply Company, of Cleveland, agreed to undertake the manufacture of such a machine if one was devised. In two months Brush made a dynamo so perfect in every way that it was running until it was taken to the World's Fair in 1893. Having made a good dynamo, the next step was a better lamp than those in use. Six months of experimenting resulted in the Brush arc light. Stockly was so well satisfied with the commercial value of these inventions that the Telegraph Supply Company, a small concern then employing about twenty-five men, was reorganized in 1879, as the Brush Electric Company. In 1880 the Brush Company put its first lights into New York City, and it has since extended the system until there is scarcely a town in the country where the light may not be found. Besides dynamos and lamps, the immense establishment at Cleveland employs its twelve hundred men in making carbons, storage-batteries, and electro-plating apparatus. Mr. Brush is a self-taught mechanic, able to do any work of his shops in a manner equal to that of an expert. He is intensely practical, never over-sanguine, and an excellent business man.

If a delicate piece of work is to be done for the first time, he will probably do it with his own hands. He is not fond of experiment for the experiment's sake; he wants to see the practical utility of the aim in view before devoting time to its attainment. Of the scores of patents he has taken out, two-thirds are said to pay him a revenue. In 1881, at the Paris Electrical Exposition, Brush received the ribbon of the Legion of Honor. In personal appearance there is nothing of the round-shouldered, impecunious, studious inventor about him. He is six feet or more in height, and so fine a specimen of manhood that Gambetta, the French statesman, once remarked that the man impressed him quite as much as the inventor.

EICKEMEYER AND HIS MOTOR.

[Ill.u.s.tration: Rudolph Eickemeyer.]

In the same field of electricity, as applied to every-day life, a Bavarian by birth, but an American by adoption, Rudolf Eickemeyer, of Yonkers, has done some valuable work in devising a useful form of dynamo. His machines are now used almost exclusively for elevators and hoisting apparatus, one large firm of elevator builders having put in no less than six hundred Eickemeyer motors within the last four years. As electricity becomes more and more useful for small powers, such as lathes, pumps, and elevators, an effective and simple motor becomes of the utmost importance. Rudolf Eickemeyer was born in October, 1831, at Kaiserslautern, Bavaria, where his father was employed as a forester. He was educated at the Darmstadt Polytechnic Inst.i.tute and at once showed a predilection for scientific work. When still a boy he joined the Revolutionists under Siegel, and after the upheaval of 1848 came here with Siegel, Carl Schurz, and George Osterheld, the latter afterward becoming his partner. The young man's first work here was as an engineer on the Erie Railroad line, then building. In 1854 he established himself in Yonkers in the business of repairing the tools used in the many hat-shops of that already flouris.h.i.+ng city. The next twenty years of his life were devoted to inventions and improvements in every branch of hat-making. His shaving-machines, stretchers, blockers, pressers, ironers, and sewing-machines subst.i.tuted mechanism for laborious and slow methods of hand work. At the beginning of the war Eickemeyer was quick to see the opportunity for turning his factory to other uses, and vast quant.i.ties of revolvers were made there. When that industry declined, he took up the manufacture of mowing-machines, having invented a driving mechanism for such machines that met with wide favor. The introduction of the Bell telephone in Yonkers first turned Eickemeyer's attention to electricity, and for the last ten years he has devoted himself almost exclusively to the invention and manufacture of electric motors. His first successful invention in this field was a dynamo to furnish light for railroad trains. From this he was led to the invention of a dynamo capable of doing effective work at much lower speed than that usually employed, and this has proved to be his most valuable achievement. Some improvements in winding the armatures have also been accepted as valuable and adopted by other manufacturers. In connection with storage batteries Mr. Eickemeyer has also done a good deal of interesting work. But he is chiefly known to the electrical world as the inventor of a most useful dynamo for power purposes. For the last forty years he has been one of the men who have most aided in the growth of Yonkers, taking great interest in all questions pertaining to its government and school system. He was married in 1856 to Mary T. Tarbell, of Dover, Me., and his eldest son, Rudolf Eickemeyer, Jr., is a.s.sociated with him in business.

GEORGE WESTINGHOUSE, JR., AND THE AIR-BRAKE.

[Ill.u.s.tration: George Westinghouse, Jr.]

George Westinghouse, Jr., to whom is due the railroad air-brake, and who was also largely instrumental in revolutionizing Pittsburgh by the introduction of natural gas, was born at Central Bridge, in Schoharie County, N.Y., in 1846. His father was a builder and, later, superintendent of the Schenectady Agricultural Works, and it was in the shops of these works that the boy found his vocation. Before he was fifteen he had modelled and built a steam engine. The war took him away from work in 1864, but when that was over he returned to Schenectady and, although yet in his teens, he began to attempt improvements upon every device that presented itself. Sometimes he was successful. Among one of his first valuable achievements was a steel railroad frog that resulted in a good deal of money and some reputation. This was in 1868.

While in Pittsburgh making his frogs, which sold well, he one day came across a newspaper account of the successful use of compressed air in piercing the Mont Cenis tunnel. His success in the field of railroad appliances had led him to study the question of better brakes, and the suggestion of compressed air came to him as a revelation. To stop a train by the old methods was a matter of much time and a tremendous expenditure of muscular energy by the brakeman, whose exertions were not always effective enough to prevent disaster. Westinghouse consulted one or two friends, who were inclined to ridicule the idea that a rubber tube strung along under the cars could do better work than the men at the brakes. Fortunately, he was able to make the experiment, and the air-brake was speedily recognized as one of the important inventions of the century.

When petroleum was discovered in the fields near Pittsburgh, some ten years ago, Mr. Westinghouse was greatly interested, and at once suggested that perhaps oil might be found near his own home in Was.h.i.+ngton County. He decided to test the matter, and planted a derrick on his own grounds. The drill was started in December, 1883, and at a depth of 1,560 feet a vein was struck, not of oil, as was antic.i.p.ated, but--what had not been counted upon as among the contingencies--of gas.

Gas was not what Westinghouse was after or wanted, but there it was, and not wis.h.i.+ng to let it run to waste, he began to consider what use could be made of it. Other people who had been boring for oil also struck gas, which, taking fire, shot up twenty or thirty feet. If such gas could be made to serve foundry purposes, here was a gigantic power going to waste. Within three years the business grew to be an immense one. The company organized by Mr. Westinghouse owned or controlled fifty-six thousand acres, upon which were one hundred wells and a distributing plant of four hundred miles of pipes. Notwithstanding the failure of some of the wells since then, natural gas is an extraordinary boon for which Pittsburgh has to thank Mr. Westinghouse. Of late years this inventor's energies have been turned toward electric machinery for lighting and power, especially as applied to railroad purposes, and a number of useful devices have resulted. Mr. Westinghouse is still in the prime of life and is activity personified. He makes his home in Pittsburgh, and is naturally looked upon as one of its leading spirits.

The field of electric invention is so vast and so actively worked that one cannot take up a newspaper without finding reference to some new achievement made possible by this wonderful agent, whose real powers were unsuspected fifty years ago. Aside from the direct value of these inventions in promoting the comfort and increasing the wealth of the country there is another factor to be considered having the most vital relation to the industries of the country and its powers of production.

The large number of inventions made in these United States implies a high degree of intelligence and mental activity in the great body of the people. It indicates trained habits of observation and trained powers of applying knowledge which has been acquired. It shows an ability to turn to account the forces of Nature and, train them to the service of man, such as has been possessed by the laborers of no other country. It suggests as pertinent the inquiry whether any other country is so well equipped for compet.i.tion in production as our own; whether in any other country the mechanic is so efficient and his labor, therefore, so cheap as in our own; whether he does not exhibit the seeming paradox of receiving more for his labor than in any other country, and at the same time doing more for what he receives.

<script>