Part 6 (1/2)

In a letter to John C. Spencer, then Secretary of the Treasury, in August, 1843, concerning electro-magnetism and its powers, he wrote:

”The practical inference from this law is that a telegraphic communication on the electro-magnetic plan may with certainty be established across the Atlantic Ocean. Startling as this may now seem, I am confident the time will come when this project will be realized.”

In 1871 a statue of Professor Morse was erected in Central Park, New York, at the expense of the telegraph operators of the country. It was unveiled on June 10th with imposing ceremonies. There were delegates from every State in the Union, and from the British provinces. In the evening a public reception was given to the venerable inventor at the Academy of Music, at which William Orton, president of the Western Union Telegraph Company, presided, a.s.sisted by scores of the leading public men of the country as vice-presidents. The last scene was an impressive one. It was announced that the telegraphic instrument before the audience was then in connection with every other one of the ten thousand instruments in America. Then Miss Cornell, a young telegraphic operator, sent this message from the key: ”Greeting and thanks to the telegraph fraternity throughout the world. Glory to G.o.d in the highest, on earth peace, good-will to men.” The venerable inventor, the personification of simplicity, dignity, and kindliness, was then conducted to the instrument, and touching the key, sent out: ”S.F.B. MORSE.” A storm of enthusiasm swept through the house as the audience rose, the ladies waving their handkerchiefs and the men cheering.

Professor Morse last appeared in public on February 22, 1872, when he unveiled the statue of Franklin, erected in Printing-house Square in New York. He died, after a short illness, on April 2, 1872, and was buried in Greenwood Cemetery. On the day of the funeral, April 5th, every telegraph office in the country was draped in mourning.

Professor Morse was twice married. His first wife died in 1825. In 1848 he married Sarah Elizabeth Griswold, of Poughkeepsie, who still lives.

By the first marriage there were three children, one of whom, a son, survives. By the second marriage there were four children, three of whom are alive--a daughter and two sons. Miss Leila Morse, the daughter, was married in 1885 to Herr Franz Rummel, the eminent pianist. The last years of his life were eminently peaceful and happy. In the summer he lived at a place called Locust Grove, on the banks of the Hudson, near Poughkeepsie, and in the winter in a house at No. 5 West Twenty-second Street, a few doors west of Fifth Avenue. In recent years a marble tablet has been affixed to the front of the house, suitably inscribed.

[Ill.u.s.tration: No. 5 West Twenty-second Street, New York, where Morse Lived for Many Years and Died.]

Morse's life in the country was very simple and quiet. His hour of rising was half-past six o'clock in the morning, and he was in his library alone until breakfast, at eight. He loved to hear the birds in their native songs, and he could distinguish the notes of each species, and would speak of the quality of their respective music. He spent most of the day in reading and writing, rarely taking exercise, except walking in his garden to visit his graperies, in which he took special pride, or to the stable to see if his horses were well cared for. He did not ride out regularly with his family, preferring the repose of his own grounds and the labors of his study. But when he walked or rode in the country, he was constantly disposed to speak of the beauty and glory around him, as revealing to his mind the beneficence, wisdom, and power of the infinite Creator, who had made all these things for the use and enjoyment of men.

One of his daughters writes of him in these simple and tender words: ”He loved flowers. He would take one in his hand and talk for hours about its beauty, its wonderful construction, and the wisdom and love of G.o.d in making so many varied forms of life and color to please our eyes. In his later years he became deeply interested in the microscope and purchased one of great excellence and power. For whole hours, all the afternoon or evening, he would sit over it, examining flowers or the animalculae in different fluids. Then he would gather his children about him and give us a sort of extempore lecture on the wonders of creation invisible to the naked eye, but so clearly brought to view by the magnifying power of the microscope. He was very fond of animals, cats, and birds in particular. He tamed a little flying-squirrel, and it became so fond of him that it would sit on his shoulder while he was at his studies and would eat out of his hand and sleep in his pocket. To this little animal he became so much attached that we took it with us to Europe, where it came to an untimely end, in Paris, by running into an open fire.”

His biographer, Prime, says of him:

”In person Professor Morse was tall, slender, graceful, and attractive.

Six feet in stature, he stood erect and firm, even in old age. His blue eyes were expressive of genius and affection. His nature was a rare combination of solid intellect and delicate sensibility. Thoughtful, sober, and quiet, he readily entered into the enjoyments of domestic and social life, indulging in sallies of humor, and readily appreciating and greatly enjoying the wit of others. Dignified in his intercourse with men, courteous and affable with the gentler s.e.x, he was a good husband, a judicious father, a generous and faithful friend. He had the misfortune to incur the hostility of men who would deprive him of the merit and the reward of his labors. But his was the common fate of great inventors. He lived until his rights were vindicated by every tribunal to which they could be referred, and acknowledged by all civilized nations. And he died leaving to his children a spotless and ill.u.s.trious name, and to his country the honor of having given birth to the only electro-magnetic recording telegraph whose line has gone out through all the earth and its words to the end of the world.”

[Ill.u.s.tration: Charles Goodyear.]

VI.

CHARLES GOODYEAR.

India-rubber had been known for more than a hundred years when Charles Goodyear undertook to make of it thousands of articles useful in common life. So long ago as 1735 a party of French astronomers discovered in Peru a curious tree that yielded the natives a peculiar gum or sap which they collected in clay vessels. This sap became hard when exposed to the sun, and was used by the natives, who made different articles of every-day use from it by dipping a clay mould again and again into the liquid. When the article was completed the clay mould was broken to pieces and shaken out. In this manner they made a kind of rough shoe and an equally rough bottle. In some parts of South America the natives presented their guests with these bottles, which served as syringes for squirting water. Articles thus made were liable to become stiff and unmanageable in cold weather and soft and sticky in warm. Upon getting back to France the travellers directed the attention of scientists to this remarkable gum, which was afterward found in various parts of South America, and the chief supplies of which still come from Brazil. About the beginning of the present century this substance, known variously as cachuchu, caoutchouc, gum-elastic, and india-rubber, was first commercially introduced into Europe. It was regarded merely as a curiosity, chiefly useful for erasing pencil-marks. s.h.i.+ps from South America took it over as ballast. About the year 1820 it began to be used in France in the manufacture of suspenders and garters, india-rubber threads being mixed with the material used in weaving those articles.

Some years later Mackintosh, an English manufacturer, used it in his famous water-proof coats, which were made by spreading a layer of the gum between two pieces of cloth.

About the same time a pair of india-rubber shoes were exhibited in Boston, where they were regarded as a curiosity; they were covered with gilt-foil to hide their natural ugliness. In 1823 a Boston merchant, engaged in the South American trade, imported five hundred pairs of these shoes, made by the natives of Para, and found no difficulty in selling them. In fact, this became a large business, although these shoes were terribly rough and clumsy and were not to be depended upon; in cold weather they became so hard that they could be used only after being thawed by the fire, and in summer they could be preserved only by keeping them on ice. If during the thawing process they were placed too near the fire, they would melt into a shapeless ma.s.s; and yet they cost from three to five dollars a pair.

In 1830 E.M. Chaffee, of Boston, the foreman of a patent leather factory in that city, attempted to replace patent leather by a compound of india-rubber. He dissolved a pound of the gum in spirits of turpentine, added to the mixture enough lamp-black to produce a bright black color, and invented a machine for spreading this compound over cloth. When dried in the sun it produced a hard, smooth surface, flexible enough to be twisted into any shape without cracking. With the aid of a few capitalists, Chaffee organized, in 1833, a company called the Roxbury India-rubber Company, and manufactured an india-rubber cloth from which wagon-covers, piano-covers, caps, coats, shoes, and other articles were made. The product of the factory sold well, and the success of the Roxbury Company led to the establishment of a number of similar factories elsewhere. Apparently all who were engaged in the production of rubber goods were on the highway to wealth.

A day of disaster, however, came. Most of the goods produced in the winter of 1833-1834 became worthless during the following summer. The shoes melted to a soft ma.s.s and the caps, wagon-covers, and coats became sticky and useless. To make matters worse they emitted an odor so offensive that it was necessary to bury them in the ground. Twenty thousand dollars' worth of these goods were thrown back on the hands of the Roxbury Company alone, and the directors were appalled by the ruin that threatened them. It was useless to go on manufacturing goods that might prove worthless at any moment. India-rubber stock fell rapidly, and by the end of 1836 there was not a solvent rubber company in the Union, the stockholders losing about $2,000,000. People came to detest the very name of india-rubber.

One day, in 1834, a Philadelphia hardware merchant, named Charles Goodyear, was led by curiosity to buy a rubber life-preserver. And thus began for this unfortunate genius nearly twenty-five years of struggle, misery, and disappointment. Charles Goodyear was born in New Haven, Conn., December 29, 1800. When a boy his father moved to Philadelphia, where he engaged in the hardware business, and upon becoming of age, Charles Goodyear joined him as a partner. In the panic of 1836-1837 the house went down. Goodyear's attention had been attracted for several years by the wonderful success of the india-rubber companies. Upon examining his life-preserver he discovered a defect in the inflating valve and made an improved one. Going to New York with this device, he called on the agent of the Roxbury Company and, explaining it to him, offered to sell it to the company. The agent was impressed with the improvement, but instead of buying it, told the inventor the real state of the india-rubber business of the country, then on the verge of a collapse. He urged Goodyear to exert his inventive skill in discovering some means of imparting durability to india-rubber goods, and a.s.sured him that if he could find a process to effect that end, he could sell it at his own price. He explained the processes then in use and their imperfections.

Goodyear forgot all about his disappointment in failing to sell his valve, and went home intent upon experiments to make gum-elastic durable. From that time until the close of his life he devoted himself solely to this work. He was thirty-five years old, feeble in health, a bankrupt in business, and had a young family depending upon him. The industry in which he now engaged was one in which thousands of persons had found ruin. The firm of which he had been a member owed $30,000, and upon his return to Philadelphia he was arrested for debt and compelled to live within prison limits. He began his experiments at once. The price of the gum had fallen to five cents per pound, so that he had no difficulty in getting sufficient of it to begin work. By melting and working it thoroughly and rolling it out upon a stone table, he succeeded in producing sheets of india-rubber that seemed to him to possess new properties. A friend loaned him enough money to manufacture a number of shoes which at first seemed to be all that could be desired.

Fearful, however, of coming trouble, Goodyear put his shoes away until the following summer, when the warm weather reduced them to a ma.s.s of so offensive an odor that he was glad to throw them away. His friend was so thoroughly disheartened by this failure as to refuse to have anything more to do with Goodyear's scheme. The inventor, nevertheless, kept on.

It occurred to him that there must be some substance which, mixed with the gum, would render it durable, and he began to experiment with almost every substance that he could lay his hands on. All proved total failures with the exception of magnesia. By mixing half a pound of magnesia with a pound of the gum he produced a substance whiter than the pure gum, which was at first as firm and flexible as leather, and out of which he made beautiful book-covers and piano-covers. It looked as if he had solved the problem; but in a month his pretty product was ruined.

Heat caused it to soften; fermentation then set in, and finally it became as hard and brittle as thin gla.s.s. His stock of money was now exhausted. He was forced to p.a.w.n all his own valuables and even the trinkets of his wife. But he felt sure that he was on the road to success and would eventually win both fame and fortune. He removed his family to the country, and set out for New York, where he hoped to find someone willing to aid him in carrying his experiments further. Here he met two acquaintances, one of whom offered him the use of a room in Gold Street as a workshop, and the other, a druggist, agreed to let him have on credit such chemicals as he needed. He now boiled the gum, mixed with magnesia, in quicklime and water, and as a result obtained firm, smooth sheets that won him a medal at the fair of the American Inst.i.tute in 1835. He seemed on the point of success, and easily sold all the sheets he could manufacture, when, to his dismay, he discovered that a drop of the weakest acid, such as the juice of an apple or diluted vinegar, would reduce his new compound to the old sticky substance that had baffled him so often.

His first important discovery on the road to real success was the result of accident. He liked pretty things, and it was a constant effort with him to make his productions as attractive to the eye as possible. Upon one occasion, while bronzing a piece of rubber cloth, he applied aqua fortis to it for the purpose of removing part of the bronze. It took away the bronze, but it also destroyed the cloth to such a degree that he supposed it ruined and threw it away. A day or two later, happening to pick it up, he was astonished to find that the rubber had undergone a remarkable change, and that the effect of the acid had been to harden it to such an extent that it would now stand a degree of heat which would have melted it before. Aqua fortis contained sulphuric acid. Goodyear was thus on the threshold of his great discovery of vulcanizing rubber.

He called his new process the ”curing” of india-rubber.