Part 17 (1/2)
The facts that have been given above prove that infra-red radiation is as effective a mode of stimulation as the more refrangible rays of the spectrum. Phototropic and radio-thermotropic reactions would therefore prove to be essentially similar. The following experiments fully confirm the similarity of the two reactions.
POSITIVE RADIO-THERMOTROPISM.
_Experiment 157._--I shall now describe the normal reaction of a growing organ to the unilateral stimulus of thermal radiation. Figure 151 gives a record of response of the stem of _Dregea_ to stimulus of short duration; the induced curvature is positive or towards the source of heat. On the cessation of stimulus, there is a recovery which is practically complete, and which takes place at a slower rate than the excitatory positive curvature. Repet.i.tion of stimulus gives rise to responses similar to the first. _Successive stimuli of moderate intensity thus give rise to repeated responses of growth curvature._ An arbitrary distinction has been made between the responses of pulvinated and of growing organs. The former is distinguished as a movement of variation, with its supposed characteristic of repeated response. But the experiment described shows that this is also met with in the response by growth curvature. It is only under long continued stimulation that the curvature is fixed by growth.
[Ill.u.s.tration: FIG. 151.--Positive response to short exposure to thermal radiation. Successive dots at intervals of 5 seconds.
(_Dregea volubilis._)]
DIA-RADIO-THERMOTROPISM.
The positive curvature is induced by r.e.t.a.r.dation of growth at the proximal side, and enhancement of growth at the distal side. This latter effect is, as we have seen, brought about by the effect of indirect stimulation.
But under long continued action of stimulus, the negative or excitatory impulse reaches the distal side, inducing diminution of turgor and r.e.t.a.r.dation of the rate of growth. This leads to neutralisation, the organ placing itself at right angles to the orienting stimulus.
[Ill.u.s.tration: FIG. 152.--Record of positive, neutral and reversed negative curvature under continued action of thermal radiation. The negative response went off the plate. Successive dots at intervals of 5 seconds. (_Dregea volubilis_).]
_Experiment 158._--This neutralisation is seen in the record given in figure 152, where under continuous unilateral stimulation, the growing organ exhibited its maximum positive curvature, after which the movement became arrested by the arrival of the excitatory impulse at the distal side, on account of which the first positive curvature became neutralised. Further continuation of stimulus caused a reversal into negative in the course of 7 minutes. It will thus be seen that in inducing phototropic curvature, the heat rays in sunlight play as important a part as the more refrangible rays of the spectrum.
SUMMARY.
The effects of rise of temperature and of radiation are antagonistic to each other.
Under unilateral action of thermal radiation a positive curvature is induced by the r.e.t.a.r.dation of growth at the proximal, and acceleration of growth at the distal side of the organ.
There is a complete recovery on the cessation of stimulus of moderate intensity and short duration. Repeated responses may thus be obtained similar to repeated responses in pulvinated organs. In certain tissues the power of conduction in a transverse direction is wanting; excitation remains localised at the proximal side, and the responsive curvature remains positive.
In other cases, there is a slow conduction of excitation to the distal side. The result of this under different circ.u.mstances is dia-radio-thermotropic neutralization, or a reversed negative curvature.
In inducing phototropic curvature, the heat rays in sunlight play as important a part as the more refrangible rays of the spectrum.
x.x.xVIII.--RESPONSE OF PLANTS TO WIRELESS STIMULATION
_By_
SIR J. C. BOSE,
_a.s.sisted by_
GURUPRASANNA DAS.
A growing plant bends towards light, and this is true not only of the main stem but also of its branches and attached leaves and leaflets.
Light affects growth, the effect being modified by the intensity of radiation. Strong stimulus of light causes a diminution of the rate of growth, but very feeble stimulus induces an acceleration. The tropic effect is very strong in the ultra-violet region of the spectrum with its extremely short wave length, but the effect declines practically to zero as we move towards the less refrangible rays--the yellow and the red with their comparatively long wave length. As we proceed beyond the infra-red region, we come across the vast range of electric radiation, the wave lengths of which vary from 06 cm., the shortest wave I have been able to produce, to others which may be miles in length. There thus arises the very interesting question, whether plants perceive and respond to the long ether waves including those employed in signalling through s.p.a.ce.
At first sight this would appear to be very unlikely; for the most effective rays are in the ultra-violet region with wave length as short as 20 10^{-6} cm.; but with electric waves used in wireless signalling we have to deal with waves 50 million times as long. The perceptive power of our retina is confined within the very narrow range of a single octave, the wave lengths of which lie between 70 10^{-6} cm.