Part 25 (2/2)

From quite another viewpoint the work of the elder Herschel is important here. No one knew the nebulae from actual observation better than he did; but, while his ideas about their composition were wrong, he nevertheless conceived of them as gradually condensing into stars or cl.u.s.ters of stars. And it was this speculative aspect of the nebulae, not as a possible means of accounting for the birth and development of the solar system, which const.i.tutes Herschel's chief contribution to the nebular hypothesis. Cla.s.sifying the nebulae which he had carefully studied with his great telescopes, it seemed obvious to him that they were actually in all the different stages of condensation, and subsequent research has strongly tended to substantiate the Herschelian view.

Then came Laplace, who took up the great hypothesis where Kant and Herschel had left it, added new and important conceptions in the light of his mature labors as mathematician and astronomer, and put the theory in definitive form, such that it has ever since been known under the name of Laplacian nebular hypothesis. For reasons like those that prevailed with Kant, he began the evolution of the solar system with the sun already formed as the center, but surrounded by a vast incandescent atmosphere that filled all the s.p.a.ce which the sun's family of planets now occupy. This entire ma.s.s, sun, atmosphere, and all, he conceived to have a stately rotation about its axis. With rotation of the ma.s.s and slow reduction of temperature in its outer regions, there would be contraction toward the solar center, and an increase in velocity of rotation until the whole ma.s.s had been much reduced in diameter at its poles and proportionately expanded at its equator.

When the centrifugal force of the outer equatorial ma.s.ses finally became equal to the gravitational forces of the central ma.s.s, then these conjoined outer portions would be left behind as a ring, still revolving at the velocity it had acquired when detached. The revolution of the entire inner ma.s.s goes on, its velocity accelerating until a similar equilibration of forces is again reached, when a second rotating ring is left behind. Laplace conceived the process as repeated until as many rings had been detached as there are individual planets, all central about the sun, or nearly so.

In all, then, we should have nine gaseous rings; the outer ones preceding the inner in formation, but not all existing as rings at the same time. Radiation from the ring on all sides would lead to rapid contraction of its ma.s.s, so that many nuclei of condensation would form, of various sizes, all revolving round the central sun in practically the same period. Laplace conceived the evolution of the ring to proceed still farther till the largest aggregation in it had drawn to itself all the other separate nuclei in the ring.

This, then, was the planet in embryo, in effect a diminutive sun, a secondary incandescent ma.s.s endowed with axial rotation in the same direction as the parent nebula. With reduction of temperature by radiation, polar contraction and equatorial expansion go on, and planetary rings are detached from this secondary ma.s.s in exactly the same way as from the original sun nebula. And these planetary rings are, in the Laplacian hypothesis, the embryo moons or planetary satellites, all revolving round their several planets in the same direction that the planets revolve about the sun.

In the case of one of the planetary rings, its formation was so nearly h.o.m.ogeneous throughout that no aggregation into a single satellite was possible; all portions of the ring being of equal density, there was no denser region to attract the less dense regions, and in this manner the rings of Saturn were formed, in lieu of condensation into a separate satellite. Similarly in the case of the primal solar ring that was detached next after the Jovian ring; there was such a nice balancing of ma.s.ses and densities that, instead of a single major planet, we have the well-known asteroidal ring, composed of innumerable discrete minor planets.

This, then, in bare outline, is the Laplacian nebular hypothesis, and it accounted very well for the solar system as known in his day; the fairly regular progression of planetary distances; their orbits round the sun all nearly circular and approximately in a single plane; the planetary and satellite revolutions in orbit all in the same direction; the axial rotations of planets in the same direction as their orbital revolutions; and the plane of orbital revolution of the satellites practically coinciding with the plane of the planet's axial rotation. But the principle of conservation of energy was, of course, unknown to Laplace, nor had the mechanical equivalence of heat with other forms of energy been established in his day.

In 1870, Lane of Was.h.i.+ngton first demonstrated the remarkable law that a gaseous sphere, in process of losing heat by radiation and contraction because of its own gravity, actually grows hotter instead of cooler, as long as it continues to be gaseous, and not liquid or solid. So there is no need of postulating with Laplace an excessively high temperature of the original nebula. The chief objection to Laplace's hypothesis by modern theorists is that the detachment of rings, though possible, would likely be a rare occurrence; protuberances or lumps on the equatorial exterior of a swiftly revolving ma.s.s would be more likely, and it is much easier to see how such ma.s.ses would ultimately become planets than it is to follow the disruption of a possible ring and the necessary steps of the process by which it would condense into a final planet. The continued progress of research in many departments of astronomy has had important bearing on the nebular hypothesis, and we may rest a.s.sured that this hypothesis in somewhat modified form can hardly fail of ultimate acceptance, though not in every essential as its great originator left it.

Lord Rosse's discovery of spiral nebulae, followed up by Keeler's photographic search for these bodies, revealing their actual existence in the heavens by the hundreds of thousands, has led to another criticism of the Laplacian theory. Could Laplace have known of the existence of these objects in such vast numbers, his hypothesis would no doubt have been suitably modified to account for their formation and development. It is generally considered that the ring of Saturn suggested to Laplace the ring feature in his scheme of origin of planets and satellites; so far as we know, the Saturnian ring is unique, the only object of its kind in the heavens. Whereas, next to the star itself, the spiral nebula is the type object which occurs most frequently. A theory, therefore, which will satisfactorily account for the origin and development of spiral nebulae must command recognition as of great importance in the cosmogony.

Such a theory has been set forth by Chamberlin and Moulton in their planetesimal hypothesis, according to which the genesis of spiral nebulae happens when two giant suns approach each other so closely that tide-producing effects take place on a vast scale. These suns need not be luminous; they may perhaps belong to the cla.s.s of dark or extinguished suns. The evidences of the existence of such in vast numbers throughout the universe is thought to be well established.

Now, on close approach, what happens? There will be huge tides, and the nearer the bodies come to each other, the vaster the scale on which tides will be formed. If the bodies are liquid or gaseous, they will be distorted by the force of gravitation, and the figure of both bodies will become ellipsoidal; and at last under greater stress, the restraining sh.e.l.l of both bodies will burst asunder on opposite sides in streams of matter from the interior. In this manner the arms of the spiral are formed.

As Chamberlin puts it: ”If, with these potent forces thus nearly balanced, the sun closely approaches another sun, or body of like magnitude ... the gravity which restrains this enormous elastic power will be reduced along the line of mutual attraction. At the same time the pressure transverse to this line of relief will be increased. Such localized relief and intensified pressure must bring into action corresponding portions of the sun's elastic potency, resulting in protuberances of corresponding ma.s.s and high velocity.”

Only a fraction of one per cent of the sun's ma.s.s ejected in this fas.h.i.+on would be sufficient to generate the entire planetary system.

Nuclei or knots in the arms of the spiral gradually grew by accretion, the four interior knots forming Mercury, Venus, the Earth, and Mars. The earth knot was a double one, which developed into the earth-moon system.

The absence of a dominating nucleus beyond Mars accounts for the zone of the asteroids remaining in some sense in the original planetesimal condition. The vaster nuclei beyond Mars gradually condensed into Jupiter, Saturn, Ura.n.u.s, and Neptune; and lesser nuclei related to the larger ones form the systems of moons or satellites.

The orbits of the planetesimals and the planetary and satellite nuclei would be very eccentric, forming a confusion of ellipses with frequently crossing paths. Collisions would occur, and the nuclei would inevitably grow by accretion. Each planet, then, would clear up the planetesimals of its zone; and Moulton shows that this process would give rise to axial revolution of the planet in the same direction as its...o...b..tal revolution. The eccentricities would finally disappear, and the entire ma.s.s would revolve in a nearly circular orbit.

Rotation twists the streams into the spiral form, and the huge amounts of wreckage from the near-collision are thrown into eddies. The fragments or particles (planetesimals) which have given the name to the theory, begin their motion round their central sun in elliptical paths as required by gravitation. The form of the spiral is preserved by the orbital motion of its particles. There is a gradual gathering together of the planetesimals at points or nodes of intersection, and these become aggregations of matter, nuclei that will perhaps become planets, though more likely other stars. The appulse or near approach is but one of the methods by which the spiral nebulae may have come into existence.

The planetesimal hypothesis would seem to account for the formation of many of these objects as we see them in the sky, though perhaps it is hardly competent to replace entirely the Laplacian hypothesis of the formation of the solar system, which would appear to be a special case by itself.

It will be observed that while the Laplacian hypothesis is concerned in the main with the progressive development of the solar system, and systems of a like order surrounding other stellar centers, whose existence is highly probable, the origin and development of the stellar universe is a vaster problem which can only be undertaken and completed in its broadest bearings when the structure of the stellar universe has been ascertained.

Darwin's important investigations in 1877-1878 on tidal friction may be here related. Before his day acceptance of the ring-theory of development of the moon from the earth had scarcely been questioned; but his recondite mathematical researches on the tidal reaction between a central yielding ma.s.s and a body revolving round it brought to light the unsuspected effect of tides raised upon both bodies by their mutual attraction. The type of tides here meant is not the usual rise and fall of the waters of the ocean, but primeval tides in the plastic material of which the earth in its early history was composed. The Newtonian law of gravitation afforded a complete explanation of the rise and fall of the waters of the oceans, but as applied to the motions of planets and satellites by the Lagrangian formulae, it presupposed that all these bodies are rigid and unyielding. However, mutual tides of phenomenal height in their early plastic substances must have been a necessary consequence of the action of the Newtonian law, and they gradually drew upon the earth's rotational moment of momentum.

In its very early history, before there was any moon to produce tides, the earth rotated much more rapidly, that is, the day was very much shorter than now, probably about five or six hours long. And with the rapid whirling, it was not a Laplacian ring that was detached, but a huge globular ma.s.s was separated from the plastic earth's equator.

Darwin shows that the gravitative interaction of the two bodies immediately began to raise tides of extraordinary height in both, therefore tending to slow down the rotational periods of both bodies.

Action and reaction being equal, the reaction at once began driving the moon away from the earth and thereby lengthening its period of revolution. So small was the ma.s.s of the moon and so near was it to the earth, that its relative rotational energy was in time completely used up, and the moon has ever since turned her constant face toward us.

Tides of sun and moon in the plastic earth, acting through the ages, slowed down the earth's rotation to its present period, or the length of the day.

Moulton, however, has investigated the tidal theory of the origin of the moon in the light of the planetesimal hypothesis, concluding that the moon never was part of the earth and separated therefrom by too rapid rotation of the earth, but that the distance of the two bodies has always been the same as now. The more ma.s.sive earth has in its development throughout time robbed the less ma.s.sive moon in the gradual process of accretion. So the moon has never acquired either an ocean or atmosphere, and this view is acceptable to geologists who have studied the sheer lunar surface, Shaler of Harvard among the first, and laid the foundations for a separate science of selenology.

<script>