Part 17 (2/2)

But now and then the planet hunter is rewarded by finding a new object in the sky that does not appear on his chart. Almost certainly this is a small planet, and only a few night's observation will be necessary to enable the discoverer to find out approximately the orbit it is traveling in, and whether it is out-and-out a new planet or only one that had been previously recognized, and then lost track of.

Nearly all the minor planets so far found have had names a.s.signed to them princ.i.p.ally legendary and mythological, and a nearly complete catalogue of them, containing the elements of their orbits (that is, all the mathematical data that tell us about their distance from the sun and the circ.u.mstances of their motion around him) is published each year in the ”Annuaire du Bureau des Longitudes” at Paris. But these little planets require a great deal of care and attention, for some astronomers must accurately observe them every few years, and other astronomers must conduct intricate mathematical computations based on these observations; otherwise they get lost and have to be discovered all over again.

Professor Watson, of the University of Michigan and later of the University of Wisconsin, endowed the 22 asteroids of his own discovery, leaving to the National Academy of Sciences a fund for prosecuting this work perpetually, and Leuschner is now ably conducting it.

[Ill.u.s.tration: JUPITER, LARGEST OF THE PLANETS. The irregular belts change their mutual relation and shapes because they do not represent land, but are part of the atmosphere. (_Photo, Yerkes Observatory._)]

[Ill.u.s.tration: THE PLANET NEPTUNE AND ITS SATELLITE. The photograph required an exposure of the plate for one hour. (_Photo, Yerkes Observatory._)]

[Ill.u.s.tration: SATURN, AS SEEN THROUGH THE 40-INCH REFRACTOR, at the time when only the edge of the rings is visible, showing condensations. (_Photo, Yerkes Observatory._)]

[Ill.u.s.tration: SATURN, PHOTOGRAPHED THROUGH THE 40-INCH REFRACTOR.

The rings appear opened to the fullest extent they can be seen from the earth. The picture was made July 7, 1898. (_Photo, Yerkes Observatory._)]

While the number of the asteroids is gratifyingly large, their individual size is so small and their total ma.s.s so slight that, even if there are a hundred thousand of them (as is wholly possible), they would not be comparable in magnitude with any one of the great planets. Vesta, the largest, is perhaps 400 miles in diameter, and if composed of substances similar to those which make up the earth, its ma.s.s may be perhaps one twenty-thousandth of the earth's ma.s.s. If we calculate the surface gravity on such a body, we find it about one-thirtieth of what it is here; so that a rifle ball, if fired on Vesta with a muzzle velocity of only 2,000 feet a second, might overmaster the gravity of the little planet entirely and be projected in s.p.a.ce never to return.

If, as is likely, some of the smallest asteroids are not more than ten miles in diameter, their gravity must be so feeble a force that it might be overcome by a stone thrown from the hand. There is no reliable evidence that any of the asteroids are surrounded by atmospheric gases of any sort. Probably they are for the most part spherical in form, although there is very reliable evidence that a few of the asteroids, being variable in the amount of sunlight that they reflect, are irregular in form, mere angular ma.s.ses perhaps.

The network of orbits of the asteroids is inconceivable complicated.

Nevertheless, there is a wide variation in their average distance from the sun, and their periods of traveling round him vary in a similar manner, the shortest being only about three years. While the longest is nearly nine years in duration, the average of all their periods is a little over four years. The gap in the zone of asteroids, at a distance from the sun equal to about five-eighths that of Jupiter, is due to the excessive disturbing action of Jupiter, whose periodic time is just twice as long as that of a theoretical planet at this distance.

The average inclination of their orbits to the plane of the ecliptic is not far from 8 degrees. But the orbit of Pallas, for example, is inclined 35 degrees, and the eccentricities of the asteroid orbits are equally erratic and excessive. Both eccentricity and inclination of orbit at times suggest a possible relation to cometary orbits, but nothing has ever been definitely made out connecting asteroids and comets in a related origin.

No comprehensive theory of the origin of the asteroid group has yet been propounded that has met with universal acceptance. According to the nebular hypothesis the original gaseous material, which should have been so concentrated as to form a planet of ordinary type, has in the case of the asteroids collected into a mult.i.tude of small ma.s.ses instead of simply one. That there is a sound physical reason for this can hardly be denied. According to the Laplacian hypothesis, the nearness of the huge planetary ma.s.s of Jupiter just beyond their orbits produced violent perturbations which caused the original ring of gaseous material to collect into fragmentary ma.s.ses instead of one considerable planet. The theory of a century ago that an original great planet was shattered by internal explosive forces is no longer regarded as tenable.

To astronomers engaged upon investigation of distances in the solar system, the asteroid group has proved very useful. The late Sir David Gill employed a number of them in a geometrical research for finding the sun's distance, and more recently the discovery of Eros (433) has made it possible to apply a similar method for a like purpose when it approaches nearest to the earth in 1924 and 1931. Then the distance of Eros will be less than half that of Mars or even Venus at their nearest.

When the total number of asteroids discovered has reached 1,000, with accurate determination of all their orbits, we shall have sufficient material for a statistical investigation of the group which ought to elucidate the question of its origin, and bear on other problems of the cosmogony yet unsolved. Present methods of discovery of the asteroids by photography replace entirely the old method by visual observation alone, with the result that discoveries are made with relatively great ease and rapidity.

CHAPTER x.x.xVI

THE GIANT PLANET

I can never forget as a young boy my first glimpse of the planet Jupiter and his moons; it was through a bit of a telescope that I had put together with my own hands; a tube of pasteboard, and a pair of old spectacle lenses that chanced to be lying about the house.

In the field of view I saw five objects; four of them looking quite alike, and as if they were stars merely (they were Jupiter's moons), while the fifth was vastly larger and brighter. It was circular in shape, and I thought I could see a faint darkish line across the middle of it.

This experience encouraged me immensely, and I availed myself eagerly of the first chance to see Jupiter through a bigger and better gla.s.s. Then I saw at once that I had observed nothing wrongly, but that I had seen only the merest fraction of what there was to see.

In the first place, the planet's disk was not perfectly circular, but slightly oval. Inquiring into the cause of this, we must remember that Jupiter is actually not a flat disk but a huge ball or globe, more than ten times the diameter of the earth, which turns swiftly round on its axis once every ten hours as against the earth's turning round in twenty-four hours. Then it is easy to see how the centrifugal force bulges outward the equatorial regions of Jupiter, so that the polar regions are correspondingly drawn inward, thereby making the polar diameter shorter than the equatorial one, which is in line with the moons or satellites. The difference between the two diameters is very marked, as much as one part in fifteen. All the planets are slightly flattened in this way, but Jupiter is the most so of all except Saturn.

The little darkish line across the planet's middle region or equator was found to be replaced by several such lines or irregular belts and spots, often seen highly colored, especially with reflecting telescopes; and they are perpetually changing their mutual relation and shapes, because they are not solid territory or land on Jupiter, but merely the outer shapes of atmospheric strata, blown and torn and twisted by atmospheric circulation on this planet, quite the same as clouds in the atmosphere on the earth are.

Besides this the axial turning of Jupiter brings an entirely different part of the planet into view every two or three hours; so that in making a map or chart of the planet, an arbitrary meridian must be selected.

Even then the process is not an easy one, and it is found that spots on Jupiter's equator turn round in 9 hours 50 minutes, while other regions take a few minutes longer, the nearer the poles are approached. The Great Red Spot, about 30,000 miles long and a quarter as much in breadth has been visible for about half a century. Bolton, an English observer, has made interesting studies of it very recently.

<script>