Part 9 (1/2)

The most powerful ally of both telescope and spectroscope is photography. Without it the marvelous researches carried on with both these types of instrument would have been essentially impossible. Even the great telescopes of Herschel and Lord Rosse, notwithstanding their splendid record as optical instruments, might have achieved vastly more had photography been developed in their time to the point where the astronomer could have employed its wonderful capabilities as he does to-day. And, with the spectroscope, it is hardly too much to say that no investigator ever observes visually with that instrument any more: practically every spectrum is made a matter of photographic record first. The observing, or nowadays the measuring, is all done afterward.

All telescopes and cameras are alike, in that each must form or have formed within it an image by means of a lens or mirror. In the telescope the eye sees the fleeting image, in the camera the process of registering the image on a plate or film is known as photography.

Daguerre first invented the process (silver film on a copper plate) in 1839. The year following it was first employed on the moon, in 1850 the first star was photographed, in 1851 the first total eclipse of the sun; all by the primitive daguerreotype process, which, notwithstanding its awkwardness and the great length of exposure required, was found to possess many advantages for astronomical work.

About the middle of the last century the wet plate process, so called because the sensitized collodion film must be kept moist during exposure, came into general use, and the astronomers of that period were not slow to avail themselves of the advantages of a more sensitive process, which in 1872, in the skillful hands of Henry Draper, produced the first spectrum of a star. In 1880 a nebula was first photographed, and in 1881 a comet.

Before this time, however, the new dry-plate process had been developed to the point where astronomers began to avail of its greater convenience and increased sensitiveness, even in spite of the coa.r.s.eness of grain of the film. Forty years of dry-plate service have brought a wealth of advantages scarcely dreamed of in the beginning, and nearly every department of astronomical research has been enhanced thereby, while many entirely new photographic methods of investigation have been worked out.

Continued improvement in photographic processes has provided the possibility of pictures of fainter and fainter celestial objects, and all the larger telescopes have photographed stars and nebulae of such exceeding faintness that the human eye, even if applied to the same instrument, would never be able to see them. This is because the eye, in ten or twelve seconds of keen watching, becomes fatigued and must be rested, whereas the action of very faint light rays is c.u.mulative on the highly sensitive film; so that a continuous exposure of many hours'

duration becomes readily visible to the eye on development. So a supersensitive dry plate will often record many thousand stars in a region where the naked eye can see but one.

Perhaps the greatest amplification of photography has taken place at the Harvard Observatory under Pickering, where a library of many hundred thousand plates has acc.u.mulated; and at Groningen, Holland, where Kapteyn has established an astronomical laboratory without instruments except such as are necessary to measure photographic plates, whenever and wherever taken. So it is possible to select the clearest of skies, all over the world, for exposure of the plates, and bring back the photographs for expert discussion.

Of course the sun was the celestial body first photographed, and its surpa.s.sing brilliance necessitates reduction of exposure to a minimum.

In moments of exceptional steadiness of the atmosphere, a very high degree of magnification of the solar surface on the photographic plate is permitted, and the details in formation, development, and ending of sun spots are faithfully registered. Nevertheless, it cannot be said that photography has yet entirely replaced the eye in this work, and careful drawings of sun spots at critical stages in their life are capable of registering fine detail which the plate has so far been unable to record. Janssen of Paris took photographs of the solar photosphere so highly magnified that the granulation or willow-leaf structure of the surface was clearly visible, and its variations traceable from hour to hour.

The advantages of sun spot photography in ascertaining the sun's rotation, keeping count of the spots, and in a permanent record for measurement of position of the sun's axis and the spot zones, are obvious. In direct portrayal of the sun's corona during total eclipses, photography has offered superior advantages over visual sketching, in the form and exact location of the coronal streamers; but the extraordinary differences of intensity between the inner corona and its outlying extensions are such that halation renders a complete picture on a single plate practically impossible. The filamentous detail of the inner corona, and the faintest outlying extensions or streamers, the eye must still reveal directly.

In solar spectrum photography, research has been especially benefited; indeed, exact registry of the mult.i.tudinous lines was quite impossible without it. Photographic maps of the spectrum by Thollon, McClean and Rowland are so complete and accurate that no visual charts can approach them. Rowland's great photographic map of the solar spectrum spread out into a band about forty feet in length; and in the infra-red, Langley's spectrobolometer extended the invisible heat spectrum photographically to many times that length. At the other end of the spectrum, special photographic processes have extended the ultra-violet spectrum far beyond the ocular limit, to a point where it is abruptly cut off by absorption of the earth's atmosphere. On the same plate with certain regions of the sun's spectrum, the spectra of terrestrial metals are photographed side by side, and exact coincidences of lines show that about forty elemental substances known to terrestrial chemistry are vaporized in the sun.

[Ill.u.s.tration: A VIEW OF THE 100-FOOT DOME IN WHICH THE LARGEST TELESCOPE IN THE WORLD IS HOUSED. (_Courtesy, Mt. Wilson Solar Observatory._)]

[Ill.u.s.tration: MOUNT CHIMBORAZO, NEAR THE EQUATOR. An observatory located on this mountain would make it possible to study the phenomena of northern and southern skies from the same point.

(_Courtesy, Pan-American Union._)]

[Ill.u.s.tration: LICK OBSERVATORY, ON THE SUMMIT OF MT. HAMILTON, ABOUT TWENTY-FIVE MILES S. W. OF SAN JOSE, CALIFORNIA. It contains the famous Lick telescope, a 36-inch refractor.]

[Ill.u.s.tration: NEAR VIEW OF THE EYE-END OF THE YERKES TELESCOPE.

The eyepiece is removed and its place taken by a photographic plate.]

Young was the first to photograph a solar prominence in 1870, and twenty years later Deslandres of Paris and Hale of Chicago independently invented the spectroheliograph, by which the chromosphere and prominences of the sun, as well as the disk of the sun itself, are all photographed by monochromatic light on a single plate. Hale has developed this instrument almost to the limit, first at the Yerkes Observatory of the University of Chicago, and more recently at the Mount Wilson Observatory of the Carnegie Inst.i.tution, where spectroheliograms of marvelous perfection are daily taken. It was with this instrument that Hale discovered the effect of an electro-magnetic field in sun spots which has revolutionized solar theories, a research impossible to conceive of without the aid of photography.

When we apply Doppler's principle, photography becomes doubly advantageous, whether we determine, as Duner did and more recently Adams, the sun's own rotation and find it to vary in different solar lat.i.tudes, the equator going fastest; or apply the method to the sun's corona at the east and west limbs of the sun, which Deslandres in 1893 proved to be rotating bodily with the sun, because of the measured displacement of spectral lines of the corona in juxtaposition on the photographic plate.

In the solar astronomy of measurement, too, photography has been helpfully utilized, as in registering the transits of Mercury over the sun's disk, for correcting the tables of the planet's...o...b..tal motion; and most prominently in the action taken by the princ.i.p.al governments of the world in sending out expeditions to observe the transits of Venus in 1874 and 1882, for the purpose of determining the parallax of Venus and so the distance of the earth from the sun.

In our studies of the moon, photography has almost completely superseded ocular work during the past sixty years. Rutherfurd and Draper of New York about 1865 obtained very excellent lunar photographs with wet plates, which were unexcelled for nearly half a century. The Harvard, Lick, and Paris Observatories have published pretty complete photographic atlases of the moon, and the best negatives of these series show nearly everything that the eye can discern, except under unusual circ.u.mstances. Later lunar photography was taken up at the Yerkes Observatory, and exceptionally fine photographs on a large scale were obtained with the 40-inch refractor, using a color screen. More recently the 60-inch and 100-inch mirrors of the Mount Wilson Observatory have taken a series of photographs of the moon far surpa.s.sing everything previously done, as was to be expected from the unique combination of a tranquil mountain atmosphere with the extraordinary optical power of the instruments, and a special adaptation of photographic methods. During lunar eclipses, Pickering has made a photographic search for a possible satellite of the moon, occultations of stars by the moon have been recorded by photography, and Russell of Princeton has shown how the position of the moon among the stars can be determined by the aid of photography with a high order of precision.

The story of planetary photography is on the whole disappointing. Much has been done, but there is much that is within reach, or ought to be, that remains undone. From Mercury nothing ought perhaps to be expected.

On many of the photographs of the transit of Venus, especially those taken under the writer's direction at the Lick Observatory in 1882, we have unmistakable evidence of the planet's atmosphere. Here again the wet plate process, although more clumsy, demonstrated its superiority over the dry process used by other expeditions.

In spectroscopy, Belopolsky has sought to determine the period of rotation of Venus on her axis. At the Lowell Observatory, Dougla.s.s succeeded in photographing the faint zodiacal light, and very successful photographs of Mars were taken at this inst.i.tution as early as 1905 by Slipher. Two years later these were much improved upon by the writer's expedition to the Andes of Chile, when 12,000 exposures of Mars were made, many of them showing the princ.i.p.al _ca.n.a.li_, and other prominent features of the planet's disk. At subsequent oppositions of the planet, Barnard at the Yerkes Observatory and the Mount Wilson observers have far surpa.s.sed all these photographs.

For future oppositions a more sensitive film is highly desired, in connection with instruments possessing greater light-gathering power, so permitting a briefer exposure that will be less influenced by irregularities and defects of the atmosphere. The spectrum of Mars is of course that of sunlight, very much reduced, and modified to a slight extent by its pa.s.sing twice through the atmosphere of Mars. What amount of aqueous vapor that atmosphere may contain is a question that can be answered only by critical comparison of the Martian spectrum with the spectrum of the moon, and photography affords the only method by which this can be done.

Many are the ways in which photography has aided research on the asteroid group. Since 1891 more than 600 of them have been discovered by photography, and it is many times easier to find the new object on the photographic plate than to detect it in the sky as was formerly done by means of star charts. The planet by its motion during the exposure of the plate produces a trail, whereas the surrounding stars are all round dots or images. Or by moving the plate slightly during exposure, as in Metcalf's ingenious method, we may catch the planet at that point where it will give a nearly circular image, and thus be quite as easy to detect, because all the stars on the same plate will then be trails.

Photographic photometry of the asteroids has revealed marked variations in their light, due perhaps to irregularities of figure. On account of their faint light, the asteroids are especially suited, as Mars is not, to exact photography for ascertaining their parallax, and from this the sun's distance when the asteroid's distance has been found. Many asteroids have been utilized in this way, in particular Eros (433). In 1931 it approaches the earth within 13 million miles, when the photographic method will doubtless give the sun's distance with the utmost accuracy.