Part 7 (2/2)

SPECTROSCOPE.

Since the invention of the telescope no discovery has given so great an impetus to astronomical physics as the spectroscope; and in giving us information about the systems of stars and their proper motions it rivals the telescope.

Frauenhofer, at the beginning of the nineteenth century, while applying Dollond's discovery to make large achromatic telescopes, studied the dispersion of light by a prism. Admitting the light of the sun through a narrow slit in a window-shutter, an inverted image of the slit can be thrown, by a lens of suitable focal length, on the wall opposite. If a wedge or prism of gla.s.s be interposed, the image is deflected to one side; but, as Newton had shown, the images formed by the different colours of which white light is composed are deflected to different extents--the violet most, the red least. The number of colours forming images is so numerous as to form a continuous spectrum on the wall with all the colours--red, orange, yellow, green, blue, indigo, and violet. But Frauenhofer found with a narrow slit, well focussed by the lens, that some colours were missing in the white light of the sun, and these were shown by dark lines across the spectrum. These are the Frauenhofer lines, some of which he named by the letters of the alphabet. The D line is a very marked one in the yellow. These dark lines in the solar spectrum had already been observed by Wollaston. [3]

On examining artificial lights it was found that incandescent solids and liquids (including the carbon glowing in a white gas flame) give continuous spectra; gases, except under enormous pressure, give bright lines. If sodium or common salt be thrown on the colourless flame of a spirit lamp, it gives it a yellow colour, and its spectrum is a bright yellow line agreeing in position with line D of the solar spectrum.

In 1832 Sir David Brewster found some of the solar black lines increased in strength towards sunset, and attributed them to absorption in the earth's atmosphere. He suggested that the others were due to absorption in the sun's atmosphere. Thereupon Professor J. D. Forbes pointed out that during a nearly total eclipse the lines ought to be strengthened in the same way; as that part of the sun's light, coming from its edge, pa.s.ses through a great distance in the sun's atmosphere. He tried this with the annular eclipse of 1836, with a negative result which has never been accounted for, and which seemed to condemn Brewster's view.

In 1859 Kirchoff, on repeating Frauenhofer's experiment, found that, if a spirit lamp with salt in the flame were placed in the path of the light, the black D line is intensified. He also found that, if he used a limelight instead of the sunlight and pa.s.sed it through the flame with salt, the spectrum showed the D line black; or the vapour of sodium absorbs the same light that it radiates. This proved to him the existence of sodium in the sun's atmosphere.[4] Iron, calcium, and other elements were soon detected in the same way.

Extensive laboratory researches (still incomplete) have been carried out to catalogue (according to their wave-length on the undulatory theory of light) all the lines of each chemical element, under all conditions of temperature and pressure. At the same time, all the lines have been catalogued in the light of the sun and the brighter of the stars.

Another method of obtaining spectra had long been known, by transmission through, or reflection from, a grating of equidistant lines ruled upon gla.s.s or metal. H. A. Rowland developed the art of constructing these gratings, which requires great technical skill, and for this astronomers owe him a debt of grat.i.tude.

In 1842 Doppler[5] proved that the colour of a luminous body, like the pitch or note of a sounding body, must be changed by velocity of approach or recession. Everyone has noticed on a railway that, on meeting a locomotive whistling, the note is lowered after the engine has pa.s.sed. The pitch of a sound or the colour of a light depends on the number of waves striking the ear or eye in a second. This number is increased by approach and lowered by recession.

Thus, by comparing the spectrum of a star alongside a spectrum of hydrogen, we may see all the lines, and be sure that there is hydrogen in the star; yet the lines in the star-spectrum may be all slightly displaced to one side of the lines of the comparison spectrum. If towards the violet end, it means mutual approach of the star and earth; if to the red end, it means recession. The displacement of lines does not tell us whether the motion is in the star, the earth, or both. The displacement of the lines being measured, we can calculate the rate of approach or recession in miles per second.

In 1868 Huggins[6] succeeded in thus measuring the velocities of stars in the direction of the line of sight.

In 1873 Vogel[7] compared the spectra of the sun's East (approaching) limb and West (receding) limb, and the displacement of lines endorsed the theory. This last observation was suggested by Zollner.

FOOTNOTES:

[1] In the _Encyclopaedia Britannica_, article ”Telescope,” and in Grant's _Physical Astronomy_, good reasons are given for awarding the honour to Lipperhey.

[2] Will the indulgent reader excuse an anecdote which may encourage some workers who may have found their mathematics defective through want of use? James Gregory's nephew David had a heap of MS. notes by Newton. These descended to a Miss Gregory, of Edinburgh, who handed them to the present writer, when an undergraduate at Cambridge, to examine. After perusal, he lent them to his kindest of friends, J. C. Adams (the discoverer of Neptune), for his opinion. Adams's final verdict was: ”I fear they are of no value. It is pretty evident that, when he wrote these notes, _Newton's mathematics were a little rusty_.”

[3] _R. S. Phil. Trans_.

[4] The experiment had been made before by one who did not understand its meaning;. But Sir George G. Stokes had already given verbally the true explanation of Frauenhofer lines.

[5] _Abh. d. Kon. Bohm. d. Wiss_., Bd. ii., 1841-42, p. 467. See also Fizeau in the _Ann. de Chem. et de Phys_., 1870, p. 211.

[6] _R. S. Phil. Trans_., 1868.

[7] _Ast. Nach_., No. 1, 864.

BOOK IV. THE PHYSICAL PERIOD

We have seen how the theory of the solar system was slowly developed by the constant efforts of the human mind to find out what are the rules of cause and effect by which our conception of the present universe and its development seems to be bound. In the primitive ages a mere record of events in the heavens and on the earth gave the only hope of detecting those uniform sequences from which to derive rules or laws of cause and effect upon which to rely. Then came the geometrical age, in which rules were sought by which to predict the movements of heavenly bodies. Later, when the relation of the sun to the courses of the planets was established, the sun came to be looked upon as a cause; and finally, early in the seventeenth century, for the first time in history, it began to be recognised that the laws of dynamics, exactly as they had been established for our own terrestrial world, hold good, with the same rigid invariability, at least as far as the limits of the solar system.

<script>