Part 1 (2/2)

Somewhere in the course of preparation the teacher must have obtained a thorough knowledge of laboratory apparatus and supplies. The selection of types of apparatus best fitted to the course, and the knowledge of where to buy are both necessary. Also judgement must be exercised in purchase for few are the places where funds are adequate for the ideal equipment of a laboratory. The money value of every piece of apparatus must be balanced against its relative usefulness in the successful culmination of the course. Besides this there must be a knowledge of the various uses to which the available apparatus may be put. A great deal depends on the ingenuity of the teacher in the adaptation of even comparatively simple apparatus. In connection with the laboratory part (and this should be the major part) of the course, there arises the question of field work and excursions. Laboratory is at best merely a subst.i.tute for the great out-of-doors, so the more work that can be done in the field the better. Aside from exploration to discover what parts of the particular locality will yield the largest fund of valuable biological information, the problem here is mainly one of method.

The teacher to be at his best must be somewhat of a naturalist. Upon his fund of interesting stories about the animals and plants that the children all know, will depend very largely the appeal of the work to the pupil. Something of the spirit that distinguished John Muir as the great naturalist is an inestimable a.s.set to the teacher. If it is not among his natal blessings, he need not be completely discouraged for it can be acquired to some degree at least. Besides the advantage just mentioned, the fauna and flora must be sufficiently well known so that _choice_ is possible for laboratory experiment and ill.u.s.trative purposes.

In order to present any subject well, its historical aspect enters into consideration. The influence of individuals, of governments, of religion, and of the social ideals have all had their share in determining the present status of the subject. Science as it now is, is the result of growth, it has undergone evolution, and is at present evolving. This will be thoroughly understood by the teacher of science, and this understanding will determine in part the method of presentation. In the history of the development of science there are many men well worthy of hero wors.h.i.+p. It is hard to find more inspirational characters than those of Pasteur, and Lazear; men who devoted (in latter instance, sacrificed life) their lives to service for humanity. In the life and work of Charles Darwin we find a splendid example of painstaking search for the truth. The records of the rocks, (Paleontology, the nature-written history of biology) will often come to the rescue of the teacher in clearing up the presentation of the difficult problems of evolution. The historic att.i.tude must be ”put over” to the pupil too, for _he_ must know his world as the result of the evolutionary process, and as still in the process of evolution.

Even at the risk of adverse criticism I desire to include among the qualifications of a good teacher the spirit of research. This spirit can be acquired by specialization in one of the fields of biological science, followed by some actual research work.

Research in science is fundamental. It has three aims or ends, 1) discovery of facts thus increasing the sum total of knowledge. This is science for science sake. 2) Individual development. And, 3) Social service. These last two aims are most important to the teacher. So, his problem for investigation should have some practical bearing, and should be of his own choosing, not pointedly suggested by the professor in charge as is too often the case. If the research student is given a problem which is some minor part of a larger problem being investigated by his professor it will preclude the very thing the prospective teacher needs, namely practice in recognizing, a.n.a.lyzing, and solving a problem in its entirety and solely on his own resources.

Being a mere helper is probably not the best way to secure such ability. Investigation may be broadening and developing to the individual or it may prove to be quite the reverse, but that lies within the control of the individual. Research for the teacher must emphasize equally actual additions to knowledge and personal att.i.tude.

It must not be an end in itself but a means to an end. The att.i.tude of the investigator is essential to the understanding of children for the child is first of all an investigator. His questions, ”what? why? how?

when?” prove this beyond doubt. What is this but a search for truth, causal factors, and interrelations? Education uses this wholesome curiosity as a foundation principle, so the teacher must exhibit a sympathetic understanding of this universal attribute of children. No better summary of a discussion of the values of research can be found for our purposes than that by G. W. A. Luckey. It follows.

”In order that teaching may be intelligent and in harmony with the laws of nature there must be a deeper and clearer knowledge of human growth and development. The teacher must know the nature of the individual to be taught and the ends to be reached in proper nurture. This can not be gained through the study of books alone, but may come through properly directed research in the workshop of life.”

One of the aims of present day education is ”to develop a man, the best man possible under the conditions; to a.s.sist nature through nurture; to enable the individual to find himself and to evolve naturally and rapidly to the highest levels and even to rise above them. According to this conception ... the initiative must come from within. The aim of the teacher should be to develop a self-sustaining, self-directing, altruistic individual keenly alive to the interests of humanity. Such an ideal is progressive, scientific, and fits one through studies of yesterday and today to live the best and truest life tomorrow. To see and appreciate this ideal, research is necessary.”

The last requirement to be considered in this discussion, is a good foundation in Physics and Chemistry. Biological science is not entirely separable from physical science, for a majority of life phenomena, in final a.n.a.lysis can be explained only in terms of physical science. Physiology has for its very foundation Physics and Chemistry. Among the newest of the sciences is Biochemistry, the chemistry of life; and within its limits are some of the most promising fields of research. No argument is necessary, a knowledge of physical science is indispensable in the interpretation of life phenomena, and the understanding of biological processes.

PREPARATION in METHODS

Method is more closely a.s.sociated with personality and with native ability than is subject matter. So much more must preparation in this field be general in nature. It must mainly concern the general principles of the scientific method. Specific problems and minor details will have to be worked out in actual practice. The final method found most satisfactory by any teacher, will be to some extent unique, but will be largely determined by three factors; the apt.i.tudes of the teacher, himself, the group that he is teaching, and lastly, the consideration of the individual pupil. Ability to adapt ones procedure so as to most nearly meet these requirements, will come about only through experience. Ability to profit by experience, the human attribute which makes possible the progress of civilization, is a no less valuable a.s.set to a teacher than to any other member of society.

Balliet points out that science teaching has pa.s.sed through three stages in the past generation. The first stage is characterized by the textbook method, occasionally supplemented by ill.u.s.trative experiment, performed by the teacher. The second stage is characterized by individual laboratory experiment, a manual for a guide, and by a lack of application of the principles except for a few traditional cases.

The third stage improves upon the second by leading the pupil, after formulating his generalizations, to apply them to the facts and phenomena of nature. ”But”, continues Balliet, ”we must advance to a fourth stage. We must not only apply the generalizations, but make the _explanation_ of the facts and phenomena of nature--the interpretation of nature--the very goal of science teaching.” All problems should be chosen then in the light of this last aim. The problems must be natural, not in any way artificial, and they should be those of the immediate environment of the pupil. To meet these obligations may be in some cases difficult, but it should not be impossible.

In biological science there is a rich field permitting a considerable choice in method. There are observations, projects, experiments, excursions, individual reports, book readings, quizzes, and conferences. In a single well chosen problem or project nearly all of these will be employed. Biology lends itself ideally to the problem method of teaching. By using some every day problem of the pupil, his interest is a.s.sured. Even a seemingly simple problem if skilfully directed, will ramify into several fields of biology before its solution is completed. And the number of practicable problems is almost limitless, but not all are equally good for the purpose, so the teacher must often tactfully modify the pupils choice. Original choices are likely to be too complex for the pupil to solve at his stage of progress, so must be simplified, without his feeling that he has been interfered with, without causing a wane in his interest. It is clear that the real problem in the problem-method is the teacher's.

Practically, it is quite impossible to handle _individual_ projects in large cla.s.ses. In the writer's experience, he has had on the average 80 different pupils per day in four separate cla.s.ses. It is clearly beyond the power of any teacher to direct simultaneously eighty different projects, and it would be a physical impossibility to furnish the necessary laboratory apparatus. So, for this reason the teacher may find it necessary to divide, as diplomatically as possible, the cla.s.ses into congenial groups, each with its problem, so that the total number of problems will be so limited that each one may be given adequate attention. It seems that such must be the limitation of the problem-method under the conditions prevailing in the public schools today.

The procedure in solving a problem will consist of these steps in the order named, 1) understanding of the purpose, 2) the procedure or method of attack, 3) observation of results, 4) and the use of these in making some generalizations or arriving at some conclusions. Then there must follow a testing of these generalizations or conclusions by further experimentation. Accuracy must be the keynote of all work, accuracy in recording experiments, accuracy in observation, accuracy in drawing, which serves as a shortcut method of description. Neatness is very desireable but should never supercede thinking and understanding. If the problem has stimulated some accurate logical thinking on the part of the pupil, then time spent on it has been well spent. If, besides, it has yielded some valuable useable information, the solving of the problem has been a marked success. The laboratory method has been such an emanc.i.p.ation from the textbook slavery that there is some tendency to elevate it to an end in itself, whereas it must serve only as a very valuable _means_ to an end. ”The ideal laboratory is only a reasonably good subst.i.tute for the out-of-doors.”

So far as preparation in the methods of science teaching is concerned, much good may be accomplished in teachers courses and in practice teaching. But it must necessarily be of a general nature, for the unique individual method, determined by the interaction of teacher and pupil and the reaction of both to subject matter can evolve only hand in hand with teaching experience.

Before proceeding further it might be well, by way of summary, to remind ourselves that the minimum qualifications for a teacher of biology must include the following; a) a large fund of the most interesting and most valuable facts of biology, b) a full realization of the values and vital relations of biology to humanity, c) ability to develop a course meeting the unique needs of the community, d) familiarity with purchase and useability of laboratory equipment, e) knowledge of the history of science, f) spirit of and sympathy with research, g) a knowledge of physical science as related to biology, h) and knowledge of the laboratory method and its value in the promotion of accurate logical constructive thinking.

OPPORTUNITY FOR ADEQUATE PREPARATION.

What possibilities of making adequate preparation, are to be found in colleges and universities? And how much preparation is required by the Teacher's Recommendation or other standards of fitness? In search of the answers to our questions, we may study conditions at the University of California, for there is as good opportunity and standards are as high in this school as anywhere in the country. The quant.i.ty of preparation is fairly a.s.sured by the five-year requirement for the Teacher's Recommendation, but the quality of the preparation is not so certainly a.s.sured. With the possible exception of the Education Department, no department considers the training of teachers even nearly equal in importance to the production of specialists in the subject who shall devote their lives to research. The subject is regarded as an end in itself.

If a person were directed to make preparation for the teaching of biology, he would be at a loss in searching for the Biology Department, or even a department that gave a good comprehensive course in biology. The subject as best taught in the secondary schools is subdivided into various components, each with its special aim. The prospective teacher has no carefully prepared course of study for his pursuit, as has the prospective doctor, engineer, or farmer. The state provides a specially adapted course of training for its veterinarians, those who care for its livestock. Why not a special course of high standard for those who plan to devote their lives to the direction of the formative years of its children? It is probably explained in large part by the failure to recognize teaching as a profession. The Schools of Education throughout the country have been insisting upon real professional training for teachers but other departments are deplorably slow in cooperating.

In order to avoid becoming entangled in abstractions, we may choose a specific instance to show the difficulties in the way of securing the correct _kind_ of preparation, even though the quant.i.ty is guaranteed.

<script>