Part 7 (1/2)

The plan of ridge ventilation, shown in the accompanying section, I applied first in St. Louis, in the summer of 1863. It is the principle of the Emerson ventilator applied to ridge ventilation. Much trouble had been experienced with other forms on account of their allowing the storms to beat in, and the difficulty of opening and closing them with the various changes of wind; this form fully remedies those objections, and can be left open without inconvenience at all times while snowing or raining. It uses the force of the wind, whenever there is a current pa.s.sing over the top of the building, for sucking the air out of the ward, because the air in pa.s.sing across the top of the building is deflected from the straight line by the angle of the roof-board, which creates a partial vacuum in the s.p.a.ce below, which, with the friction of the pa.s.sing current with that coming out of the ward, makes an outward draught, varying in proportion to the velocity of the external current. This is often very useful, especially in summer, when there is not sufficient difference between the external air and that in the ward to create a current. There is often a considerable force in the pa.s.sing current at the top of the building when there is much less below.

[Ill.u.s.tration: Fig. 2.]

But of course these openings had to be closed in winter to prevent all the heat from escaping. It then became necessary in wards that had no fireplaces, to make something as subst.i.tutes therefor. Wooden shafts or flues were made to answer this purpose.

I at first made large wooden boxes, placing them in the centre of the wards, and allowing them to extend down to within twelve or eighteen inches of the floor. This was of great advantage, but as the true principle of ventilation is to have an opening for the exit of the contaminated air at the feet of each occupant of a room, or at the head of the bed of each patient in a hospital, it was soon observed that these shafts were too few and far between to make a very perfect arrangement.

The necessity for providing for the escape of the foul air from the level of the floor in winter, so as to utilize the heat, was, after much opposition, finally established and officially acknowledged by the government officers. Then arrangements were made for its introduction into the government hospitals in a more perfect manner.

I believe in no case, however, was it so fully carried out as to place a ventilating flue between each bed, but in some they were arranged, as shown (marked V) in the accompanying plans between every other two beds.

These flues were carried together and extended through the ridge of the roof and capped as an Emerson ventilator; the opening into the large flue, extending to just below the ceiling, was closed in winter at all times, excepting when the room was too warm. This was for the exhaust, but of no less importance was the supply.

The popular dread of ventilation arises in a great measure from the supposition that good ventilation implies a strong draught of cold air upon your back or feet or some other unfortunately exposed place. Such an unfortunate occurrence must be fully remedied in any system of ventilation before it can become popular.

As the simplest way of getting at this, all the fresh air required to supply the partial vacuum created by the exhausting shafts was brought in around the stoves, and partially warmed before entering. At the first the stoves were entirely encased, and the fresh air allowed to encircle them completely, but experience soon demonstrated the desirableness of having a portion of the hot stove exposed for direct radiation, so that the feeble and chilly ones might come near to it and warm themselves. There should always be a considerable amount of direct radiation in every hospital; that from an open fire is the best, but that from a stove or steam-pipe is very good.

Arrangements were also made for the evaporation of a large amount of water.

As the first winter approached after the commencement of the war, the idea seemed almost shocking to me of putting the sick and wounded men in such open barracks, generally without plastering, and made, as many of them were, with rough boards and very open.

But experience soon taught me the very great superiority of these light and airy buildings over many of the elaborately finished, dark, air-tight structures, such as hotels, colleges, new-fas.h.i.+oned asylums, &c., which the government was compelled to take for hospital purposes.

In fact, when completed with the ventilation as above described, with the abundant sunlight on both sides, without any obstructing part.i.tions and abundantly warmed in winter, and with the proper supply of moisture, they made undoubtedly the most comfortable and wholesome cla.s.s of buildings, as a whole, that have ever been erected for hospital purposes, not excepting even many of the recent elaborately finished buildings, where not unfrequently too much dependence has been placed on the very meagre and insufficient effect produced by attempts at artificial ventilation, instead of relying more upon the great natural means of ventilation--an abundance of large open windows, open fires and good ventilating stoves.

The ventilation of the latrines or water-closets of a hospital, as well as any other place, is a matter of great importance.

In the spring of 1863, I had put up in a hospital in Was.h.i.+ngton a ventilating shaft for the latrine room, similar to the one shown on the plans. This was an experiment, but it proved so satisfactory that it was subsequently ordered to be applied in all the princ.i.p.al hospitals.

The difficulty in the isolated wards was, that it required a separate fire in each shaft in the summer. Where it is possible to get it near the kitchen or bake-oven fire, that answers a splendid purpose; but in the single wards it is not necessary to keep up a constant fire; a few sticks of wood every morning answer the purpose of keeping the air in the shaft warmer than the surrounding atmosphere, which, of course, creates the proper draught.

These shafts were made very large--never less than thirty inches square and sometimes three feet by six feet. The popular plan of opening the water-closet windows and allowing much of the fresh air to enter the building that way was strenuously avoided; the windows in the closet were fastened shut, and then the air to supply this large exhaust shaft was drawn from the adjoining ward or room, which ventilated that ward and prevented any unpleasant odor from the closets returning into the ward.

Wherever it was possible, a sheet iron or cast iron pipe was carried up into the centre of this shaft from the kitchen, laundry, bakery or any other constant fire, and where no heat from a permanent fire or from a steam coil could be obtained, a small stove for the purpose was provided.

LEWIS W. LEEDS, _Germantown, Pa._

7th mo. 26th, 1867.

_The subjoined are a few of the Letters received from prominent Sanitarians and others._

Office of the Superintendent of Health, Providence, August 5, 1867.