Part 4 (1/2)

Fire-Safe Fuel

_Furnaces in many a home burn similar oil_

_A lighted match cannot ignite or explode it_

_Saturated cloth can burn only like a wick_

_And the oil itself will quench this fire_

_But only when property atomized the spray may be ignited_

Graphic Proof of fuel safety in the Packard-Diesel Aircraft Engine

Figure 36.--Advertis.e.m.e.nt emphasizing the advantages of fire-safe fuel.

(Smithsonian photo A48848.)]

Due to the greater simplicity, it was more practical to build a large diesel than a large gasoline engine. Large airplanes would therefore need fewer engines if diesel powered. Smaller fuel tanks could be used because of the greater fuel economy of the diesel, and also because of the high specific gravity of fuel oil as compared to gasoline.

Furthermore, these smaller tanks could be placed in more convenient locations. Not having a carburetor the engine could not backfire, further reducing the fire hazard. The exhaust note was lower because of the diesel's higher expansion ratio. The absence of an ignition system permitted the diesel to operate in the heaviest types of precipitation.

Such conditions might cause the ignition system of a gasoline engine to malfunction. The Packard diesel was flown at times without exhaust stacks or manifolds; this was practical from a safety standpoint because of the diesel's lower exhaust temperature due to its higher expansion ratio. Elimination of these parts reduced the weight and cost of the engine installation. Finally, the engine was ideal for aerobatics, since the injectors, unlike carburetors, would work equally well whether right side up or upside down.

An advantage peculiar to the Packard among aeronautical diesels was its light weight. The English Beardmore ”Tornado III” weighed 6.9 lb/hp, and the German Junkers SL-1 (FO-4) weighed 3.1 lb/hp, while the Packard weighed but 2.3 lb/hp. In fairness to the Beardmore, it was the only one of the three engines designed for airs.h.i.+p use, and part of its heaviness was due to the special requirements of lighter-than-air craft. A contemporary and comparable American gasoline engine, the Lycoming R-680, weighed 2.2 lb/hp. To have designed a diesel aircraft engine as light as a gasoline one was a remarkable achievement.

Disadvantages

There are four main reasons why the Packard diesel was not successful.

First the Packard Motor Car Company put the engine into production a brief three years after it was created. The only successful airplane diesel, the German Junkers ”Jumo,” was in development more than three times as long (1912-1929). The following tests indicate that the Packard diesel was not ready for production, and hence was unreliable.

Packard Motor Car Company 50-Hour Test (Feb. 15-18, 1930): This test was identical to the standard Army 50-hour test which was used for the granting of the Approved Type Certificate. The engine tested was numbered 100, and was the first to be made with production tools (approximately half a dozen engines had been handmade previously). It had to be stopped three times, twice due to failure of the fuel pump plunger springs and once due to the loosening of the oil connection ring. These failures were attributed to manufacturing discrepancies. In addition, 4 out of a total of 103 valve springs broke.[29]

U.S. Navy 50-Hour Test (Jan. 22, 1931, to March 15, 1931): The engine used in the Navy test was numbered 120. (Apparently only 20 production engines had been built during the preceding 12 months; Dorner in a letter of March 3, 1962, states that the total number of Packard diesels produced was approximately 25.) The engine had to be stopped three times, twice due to valve-spring collar failures and once due to a valve head breaking. Because of these failures this test was not completed.

The following significant quotations have been extracted from the test: ”The engine is not recommended for service use.... Flight tests, until the durability of the engine is improved, be limited to a determination of the critical engine speeds, and to short hops in seaplanes.... It is believed that this size engine should be made suitable for service use before this type in a larger cla.s.s is attempted.” This latter statement probably refers to the 400-hp model.

A year had pa.s.sed between the making of engine 100 and 120, yet the reliability had not improved. Although unreliability was the immediate cause of failure, there were two design defects which would have doomed the engine even if it had been reliable. All the Packard diesels were of the 4-stroke cycle unblown type, yet the most successful airplane diesels were of the 2-stroke cycle blown type.[30] The advantages of the latter type for aeronautical use are that it is of a more compact engine, of lower weight and greater efficiency.[31] The engine was therefore built around the wrong cycle.

The Packard diesel of 1928 was designed to compete with the Wright J-5 ”Whirlwind” which powered Lindbergh's ”Spirit of St. Louis” in 1927.[32]

The specifications were within two percent of each other. The diesel engine's fuel consumption was far less although its price was considerably higher.

_Packard Diesel_ _Wright J-5_ _DR-980_ _”Whirlwind”_

Diameter (in.) 45-11/16 45 Horsepower 225 225 Weight (lb) 510 510 Weight-horsepower ratio 2.26 2.26 Fuel consumption (lb per hp/hr at 0.40 0.60 cruising).

Cost $4025 $3000

The advantages of lower fuel cost and greater cruising range offered by the diesel engine would be relatively unimportant to a private pilot flying for pleasure, but would be vital to the commercial operator using airplanes powered by engines having several times the horsepower of the Packard diesel. Its size, moreover, was too small for the technology of fuel injectors.[33] The Packard Company realized that the production engine was too small.[34] In 1930 a 400-hp version was built but was not put into production, probably because of the unreliability of the 225-hp model.

The fourth princ.i.p.al reason why the engine failed is explained by the following quotation from _The Propulsion of Aircraft_, by M. J. B. Davy (published in 1936 by His Majesty's Stationery Office, London):