Part 9 (1/2)

Herschel[207]) conformed with very approximate precision to ”Bode's law”

of distances; they all traversed, in their circuits round the sun, nearly the same parts of Cetus and Virgo; while the eccentricities and inclinations of their paths departed widely from the planetary type--that of Pallas, to take an extreme instance, making with the ecliptic an angle of nearly 35. The minuteness of these bodies appeared further to strengthen the imputation of a fragmentary character.

Herschel estimated the diameter of Ceres at 162, that of Pallas at 147 miles.[208] But these values are now known to be considerably too small.

A suspected variability of brightness in some of the asteroids, somewhat hazardously explained as due to the irregularities of figure to be expected in cosmical _potsherds_ (so to speak), was added to the confirmatory evidence.[209] The strong point of the theory, however, lay not in what it explained, but in what it had predicted. It had been twice confirmed by actual exploration of the skies, and had produced, in the recognition of Vesta, the first recorded instance of the _premeditated_ discovery of a heavenly body.

The view not only commended itself to the facile imagination of the unlearned, but received the sanction of the highest scientific authority. The great Lagrange bestowed upon it his a.n.a.lytical _imprimatur_, showing that the explosive forces required to produce the supposed catastrophe came well within the bounds of possibility; since a velocity of less than twenty times that of a cannon-ball leaving the gun's mouth would have sufficed, according to his calculation, to launch the asteroidal fragments on their respective paths. Indeed, he was disposed to regard the hypothesis of disruption as more generally available than its author had designed it to be, and proposed to supplement with it, as explanatory of the eccentric orbits of comets, the nebular theory of Laplace, thereby obtaining, as he said, ”a complete view of the origin of the planetary system more conformable to Nature and mechanical laws than any yet proposed.”[210]

Nevertheless the hypothesis of Olbers has not held its ground. It seemed as if all the evidence available for its support had been produced at once and spontaneously, while the unfavourable items were elicited slowly, and, as it were, by cross-examination. A more extended acquaintance with the group of bodies whose peculiarities it was framed to explain has shown them, after all, as recalcitrant to any such explanation. Coincidences at the first view significant and striking have been swamped by contrary examples; and a hasty general conclusion has, by a not uncommon destiny, at last perished under the acc.u.mulation of particulars. Moreover, as has been remarked by Professor Newcomb,[211] mutual perturbations would rapidly efface all traces of a common disruptive origin, and the catastrophe, to be perceptible in its effects, should have been comparatively recent.

A new generation of astronomers had arisen before any additions were made to the little family of the minor planets. Piazzi died in 1826, Harding in 1834, Olbers in 1840; all those who had prepared or partic.i.p.ated in the first discoveries pa.s.sed away without witnessing their resumption. In 1830, however, a certain Hencke, ex-postmaster in the Prussian town of Driessen, set himself to watch for new planets, and after fifteen long years his patience was rewarded. The asteroid found by him, December 8, 1845, received the name of Astraea, and his further prosecution of the search resulted, July 1, 1847, in the discovery of Hebe. A few weeks later (August 13), John Russell Hind (1823-1893), after many months' exploration from Mr. Bishop's observatory in the Regent's Park, picked up Iris, and October 18, Flora.[212] The next on the list was Metis, found by Mr. Graham, April 25, 1848, at Markree, in Ireland.[213] At the close of the period to which our attention is at present limited, the number of these small bodies known to astronomy was thirteen; and the course of discovery has since proceeded far more rapidly and with less interruption.

Both in itself and in its consequences the recognition of the minor planets was of the highest importance to science. The traditional ideas regarding the const.i.tution of the solar system were enlarged by the admission of a new cla.s.s of bodies, strongly contrasted, yet strictly co-ordinate with the old-established planetary order; the profusion of resource, so conspicuous in the living kingdoms of Nature, was seen to prevail no less in the celestial s.p.a.ces; and some faint preliminary notion was afforded of the indefinite complexity of relations underlying the apparent simplicity of the majestic scheme to which our world belongs. Both theoretical and practical astronomy derived profit from the admission of these apparently insignificant strangers to the rights of citizens.h.i.+p of the solar system. The disturbance of their motions by their giant neighbours afforded a more accurate knowledge of the Jovian ma.s.s, which Laplace had taken about 1/50 too small; the anomalous character of their orbits presented geometers with highly stimulating problems in the theory of perturbation; while the exigencies of the first discovery had produced the _Theoria Motus_, and won Gauss over to the ranks of calculating astronomy. Moreover, the sure prospect of further detections powerfully incited to the exploration of the skies; observers became more numerous and more zealous in view of the prizes held out to them; star-maps were diligently constructed, and the sidereal mult.i.tude strewn along the great zodiacal belt acquired a fresh interest when it was perceived that its least conspicuous member might be a planetary shred or projectile in the dignified disguise of a distant sun. Harding's ”Celestial Atlas,” designed for the special purpose of facilitating asteroidal research, was the first systematic attempt to represent to the eye the _telescopic_ aspect of the heavens.

It was while engaged on its construction that the Lilienthal observer successfully intercepted Juno on her pa.s.sage through the Whale in 1804; whereupon promoted to Gottingen, he there completed, in 1822, the arduous task so opportunely entered upon a score of years previously.

Still more important were the great star-maps of the Berlin Academy, undertaken at Bessel's suggestion, with the same object of distinguis.h.i.+ng errant from fixed stars, and executed, under Encke's supervision, during the years 1830-59. They have played a noteworthy part in the history of planetary discovery, nor of the minor kind alone.

We have now to recount an event unique in scientific history. The discovery of Neptune has been characterised as the result of a ”movement of the age,”[214] and with some justice. It had become necessary to the integrity of planetary theory. Until it was accomplished, the phantom of an unexplained anomaly in the orderly movements of the solar system must have continued to haunt astronomical consciousness. Moreover, it was prepared by many, suggested as possible by not a few, and actually achieved, simultaneously, independently, and completely, by two investigators.

The position of the planet Ura.n.u.s was recorded as that of a fixed star no less than twenty times between 1690 and the epoch of its final detection by Herschel. But these early observations, far from affording the expected facilities for the calculation of its...o...b..t, proved a source of grievous perplexity. The utmost ingenuity of geometers failed to combine them satisfactorily with the later Uranian places, and it became evident, either that they were widely erroneous, or that the revolving body was wandering from its ancient track. The simplest course was to reject them altogether, and this was done in the new Tables published in 1821 by Alexis Bouvard, the indefatigable computating partner of Laplace. But the trouble was not thus to be got rid of. After a few years fresh irregularities began to appear, and continued to increase until absolutely ”intolerable.” It may be stated as ill.u.s.trative of the perfection to which astronomy had been brought, that divergencies regarded as menacing the very foundation of its theories never entered the range of unaided vision. In other words, if the theoretical and the real Ura.n.u.s had been placed side by side in the sky, they would have seemed, to the sharpest eye, to form a single body.[215]

The idea that these enigmatical disturbances were due to the attraction of an unknown exterior body was a tolerably obvious one; and we accordingly find it suggested in many different quarters. Bouvard himself was perhaps the first to conceive it. He kept the possibility continually in view, and bequeathed to his nephew's diligence the inquiry into its reality when he felt that his own span was drawing to a close; but before any progress had been made with it, he had already (June 7, 1843) ”ceased to breathe and to calculate.” The Rev. T. J.

Hussey actually entertained in 1834 the notion, but found his powers inadequate to the task, of a.s.signing an approximate place to the disturbing body; and Bessel, in 1840, laid his plans for an a.s.sault in form upon the Uranian difficulty, the triumphant exit from which fatal illness frustrated his hopes of effecting or even witnessing.

The problem was practically untouched when, in 1841, an undergraduate of St. John's College, Cambridge, formed the resolution of grappling with it. The projected task was an arduous one. There were no guiding precedents for its conduct. a.n.a.lytical obstacles had to be encountered so formidable as to appear invincible even to such a mathematician as Airy. John Couch Adams, however, had no sooner taken his degree, which he did as senior wrangler in January, 1843, than he set resolutely to work, and on October 21, 1845, was able to communicate to the Astronomer Royal numerical estimates of the elements and ma.s.s of the unknown planet, together with an indication of its actual place in the heavens.

These results, it has been well said,[216] gave ”the final and inexorable proof” of the validity of Newton's Law. The date October 21, 1845, ”may therefore be regarded as marking a distinct epoch in the history of gravitational astronomy.”

Sir George Biddell Airy had begun in 1835 his long and energetic administration of the Royal Observatory, and was already in possession of data vitally important to the momentous inquiry then on foot. At his suggestion, and under his superintendence, the reduction of all the planetary observations made at Greenwich from 1750 onwards had been undertaken in 1833. The results, published in 1846, const.i.tuted a permanent and universal stock of materials for the correction of planetary theory. But in the meantime, investigators, both native and foreign, were freely supplied with the ”places and errors,” which, clearly exhibiting the discrepancies between observation and calculation--between what _was_ and what was _expected_--formed the very groundwork of future improvements.

Mr. Adams had no reason to complain of official discourtesy. His labours received due and indispensable aid; but their purpose was regarded as chimerical. ”I have always,” Sir George Airy wrote,[217] ”considered the correctness of a distant mathematical result to be a subject rather of moral than of mathematical evidence.” And that actually before him seemed, from its very novelty, to incur a suspicion of unlikelihood. No problem in planetary disturbance had heretofore been attacked, so to speak, from the rear. The inverse method was untried, and might well be deemed impracticable. For the difficulty of determining the perturbations produced by a given planet is small compared with the difficulty of finding a planet by its resulting perturbations. Laplace might have quailed before it; yet it was now grappled with as a first essay in celestial dynamics. Moreover, Adams unaccountably neglected to answer until too late a question regarded by Airy in the light of an _experimentum crucis_ as to the soundness of the new theory. Nor did he himself take any steps to obtain a publicity which he was more anxious to merit than to secure. The investigation consequently remained buried in obscurity. It is now known that had a search been inst.i.tuted in the autumn of 1845 for the remote body whose existence had been so marvellously foretold, it would have been found within _three and a half lunar diameters_ (1 49') of the spot a.s.signed to it by Adams.

A compet.i.tor, however, equally daring and more fortunate--_audax fortuna adjutus_, as Gauss said of him--was even then entering the field. Urbain Jean Joseph Leverrier, the son of a small Government _employe_ in Normandy, was born at Saint-Lo, March 11, 1811. He studied with brilliant success at the ecole Polytechnique, accepted the post of astronomical teacher there in 1837, and, ”docile to circ.u.mstance,”

immediately concentrated the whole of his vast, though as yet undeveloped powers upon the formidable problems, of celestial mechanics.

He lost no time in proving to the mathematical world that the race of giants was not extinct. Two papers on the stability of the solar system, presented to the Academy of Sciences, September 16 and October 14, 1839, showed him to be the worthy successor of Lagrange and Laplace, and encouraged hopes destined to be abundantly realised. His attention was directed by Arago to the Uranian difficulty in 1845, when he cheerfully put aside certain intricate cometary researches upon which he happened to be engaged, in order to obey with dutiful prompt.i.tude the summons of the astronomical chief of France. In his first memoir on the subject (communicated to the Academy, November 10, 1845), he proved the inadequacy of all known causes of disturbance to account for the vagaries of Ura.n.u.s; in a second (June 1, 1848), he demonstrated that only an exterior body, occupying at a certain date a determinate position in the zodiac, could produce the observed effects; in a third (August 31, 1846), he a.s.signed the orbit of the disturbing body, and announced its visibility as an object with a sensible disc about as bright as a star of the eighth magnitude.

The question was now visibly approaching an issue. On September 10, Sir John Herschel declared to the British a.s.sociation respecting the hypothetical new planet: ”We see it as Columbus saw America from the coast of Spain. Its movements have been felt, trembling along the far-reaching line of our a.n.a.lysis with a certainty hardly inferior to that of ocular demonstration.” Less than a fortnight later, September 23, Professor Galle, of the Berlin Observatory, received a letter from Leverrier requesting his aid in the telescopic part of the inquiry already a.n.a.lytically completed. He directed his refractor to the heavens that same night, and perceived, within less than a degree of the spot indicated, an object with a measurable disc nearly three seconds in diameter. Its absence from Bremiker's recently-completed map of that region of the sky showed it to be no star, and its movement in the predicted direction confirmed without delay the strong persuasion of its planetary nature.[218]

In this remarkable manner the existence of the remote member of our system known as ”Neptune” was ascertained. But the discovery, which faithfully reflected the duplicate character of the investigation which led to it, had been already secured at Cambridge before it was announced from Berlin. Sir George Airy's incredulity vanished in the face of the striking coincidence between the position a.s.signed by Leverrier to the unknown planet in June, and that laid down by Adams in the previous October; and on the 9th of July he wrote to Professor Challis, director of the Cambridge Observatory, recommending a search with the great Northumberland equatoreal. Had a good star-map been at hand, the process would have been a simple one; but of Bremiker's ”Hora XXI.” no news had yet reached England, and there was no other sufficiently comprehensive to be available for an inquiry which, in the absence of such aid, promised to be both long and laborious. As the event proved, it might have been neither. ”After four days of observing,” Challis wrote, October 12, 1846, to Airy, ”the planet was in my grasp if only I had examined or mapped the observations.”[219] Had he done so, the first honours in the discovery, both theoretical and optical, would have fallen to the University of Cambridge. But Professor Challis had other astronomical avocations to attend to, and, moreover, his faith in the precision of the indications furnished to him was, by his own confession, a very feeble one. For both reasons he postponed to a later stage of the proceedings the discussion and comparison of the data nightly furnished to him by his telescope, and thus allowed to lie, as it were, latent in his observations the momentous result which his diligence had insured, but which his delay suffered to be antic.i.p.ated.[220]

Nevertheless, it should not be forgotten that the Berlin astronomer had two circ.u.mstances in his favour apart from which his swift success could hardly have been achieved. The first was the possession of a good star-map; the second was the clear and confident nature of Leverrier's instructions. ”Look where I tell you,” he seemed authoritatively to say, ”and you will see an object such as I describe.”[221] And in fact, not only Galle on the 23rd of September, but also Challis on the 29th, immediately after reading the French geometer's lucid and impressive treatise, picked out from among the stellar points strewing the zodiac, a small planetary disc, which eventually proved to be that of the precise body he had been in search of during two months.

The controversy that ensued had its ignominious side; but it was entered into by neither of the parties princ.i.p.ally concerned. Adams bore the disappointment, which the dilatory proceedings at Greenwich and Cambridge had inflicted upon him, with quiet heroism. His silence on the subject of what another man would have called his wrongs remained unbroken to the end of his life;[222] and he took every opportunity of testifying his admiration for the genius of Leverrier.

Personal questions, however, vanish in the magnitude of the event they relate to. By it the last lingering doubts as to the absolute exactness of the Newtonian Law were dissipated. Recondite a.n.a.lytical methods received a confirmation brilliant and intelligible even to the minds of the vulgar, and emerged from the patient solitude of the study to enjoy an hour of clamorous triumph. For ever invisible to the unaided eye of man, a sister-globe to our earth was shown to circulate, in perpetual frozen exile, at thirty times its distance from the sun. Nay, the possibility was made apparent that the limits of our system were not even thus reached, but that yet profounder abysses of s.p.a.ce might shelter obedient, though little favoured, members of the solar family, by future astronomers to be recognised through the sympathetic thrillings of Neptune, even as Neptune himself was recognised through the tell-tale deviations of Ura.n.u.s.

It is curious to find that the fruit of Adams's and Leverrier's laborious investigations had been accidentally all but s.n.a.t.c.hed half a century before it was ripe to be gathered. On the 8th, and again on the 10th of May, 1795, Lalande noted the position of Neptune as that of a fixed star, but perceiving that the two observations did not agree, he suppressed the first as erroneous, and pursued the inquiry no further.

An immortality which he would have been the last to despise hung in the balance; the feather-weight of his carelessness, however, kicked the beam, and the discovery was reserved to be more hardly won by later comers.

Bode's Law did good service in the quest for a trans-Uranian planet by affording ground for a probable a.s.sumption as to its distance. A starting-point for approximation was provided by it; but it was soon found to be considerably at fault. Even Ura.n.u.s is about 36 millions of miles nearer to the sun than the order of progression requires; and Neptune's vast distance of 2,800 million should be increased by no less than 800 million miles, and its period of 165 lengthened out to 225 years,[223] in order to bring it into conformity with the curious and unexplained rule which planetary discoveries have alternately tended to confirm and to invalidate.

Within seventeen days of its identification with the Berlin achromatic, Neptune was found to be attended by a satellite. This discovery was the first notable performance of the celebrated two-foot reflector[224]