Part 2 (1/2)

Other persons seem to think that the laws of matter are different in the laboratory from what they are in the workshop; that the principles which regulate a scientific experiment are different from those which govern a large manufacturing process; but this is a wrong idea. The laws of matter are universal, substances have nearly the same properties in all places and in the hands of all men; water boils at the same temperature whether in the retort of a chemist, the saucepan of a kitchenmaid, or the pan of a soap-boiler; iron wire is as readily deprived of its rust in a chemist's acid bottle as in a wire-drawer's pickling tub; a piece of phosphorus will as readily ignite in the hands of a chemist as in those of a match maker; a galvanic battery yields the same quant.i.ty of electricity whether it be in the hands of an experimentalist or in those of a working electro-plater.

It is true that many things which have appeared very promising in theory or in experiment, have {49} failed altogether in practice, but why is this? it is not that the principles of nature operated in the one case and did not operate in the other, but that we have imperfectly understood them, that from some unforeseen circ.u.mstances we have been unable to apply them; or that we have indolently abandoned them without sufficient or proper trial.

In many cases we are unable to obtain the same conditions of success upon the large scale that we have upon the small one. In other cases a process fails because of its too great expense; many attempts have been made to supersede steam as a motive power by means of electro-magnetism, and engines driven by that force have been constructed of five or ten horse-power, but the cost of driving them has been found to be at least ten times the amount of that of the steam-engine of equal strength. And in other cases we fail because we attempt _at once_ to carry out upon a large scale that which has only been the subject of limited experiment, instead of enlarging the process by small degrees, and adapting the apparatus, the materials and the treatment, to the size of the operation.

That also which appears very simple in the hands of an experimentalist, almost invariably becomes much more complex when carried into practice in a manufactory, simply because there is then a greater number of conditions to be fulfilled. Electro-plating a piece of steel with silver is to a chemist a very simple matter, because it is of no importance to him {50} whether the silver adheres firmly, is of good colour, or is deposited at a certain cost; but with a _manufacturer_ unless _all_ these conditions are fulfilled, the process is a failure. These matters, however, belong to invention and not to original discovery.

We should not condemn theoretical science because we are not able, even with fair and persevering trial, to apply it to any useful purpose, but wait patiently until circ.u.mstances ripen for its application. Many inventions which are inapplicable in one state of knowledge become applicable by the progress of scientific research. The idea of an electric telegraph, attempted by Mr. Ronalds, in the year 1816, with the aid of frictional electricity, had to wait the development of the galvanic battery and the discovery of electro-magnetism before it could be successfully applied.

Many manufacturers seem to think that because some of their operations are completely routine, and have been handed down to them by their predecessors in nearly their present state, they are not at all indebted to science; but there is no manufacture, especially among metals, which has not in some degree been aided by scientific discovery.

In addition to the great benefits accruing from original research to all cla.s.ses of society, our Governments have also derived immense advantages from the same source. The revenues have been greatly increased by the universal advantages conferred upon all kinds of industry and commerce by {51} scientific knowledge. The additional taxes upon increased incomes from agriculture, arts, manufactures, mines; increased value of land and rents; investments in railway, telegraph, steam-s.h.i.+p and other companies, have been extremely great. From the sale of patents alone, a surplus sum of nearly six hundred thousand pounds has already acc.u.mulated. Our Governments are also indebted to original research for the use of percussion-powder, gun-cotton, improvements in cannon, projectiles, rifles, armour-plated s.h.i.+ps, the ocean telegraph, field telegraph, the telephone, rapid postal communication, the speedy transport of troops and war-material, and a mult.i.tude of other advantages. The value of science to Governments in the prevention of war by means of more ready correspondence through telegraph is incalculable. Mr. Sumner, of America, at the period when the Atlantic telegraph was first employed, stated that the use of that telegraph averted a probable rupture between Great Britain and America. There was a period when we did not possess such evidence of the great value of science; but that time has now pa.s.sed away, and our governing men have had abundant proof of the national importance of scientific discovery, and of the essential dependence of the welfare of this country upon scientific research.

Whilst vast sums of money are spent upon the applications of science in military and naval affairs, research itself is neglected; the superstructure is {52} attended to, but the foundations are left to decay.

A very small proportion of the money which is expended upon military affairs would, if devoted to research, save a great deal of expense in warfare:--

”Were half the power, that fills the world with terror,-- Were half the wealth, bestowed on camps and courts, Given to redeem the human mind from error, There were no need of a.r.s.enals nor forts.”--LONGFELLOW.

Our Government has as yet made but little payment for the labour of pure research in experimental physics or chemistry; it has, however, given four thousand pounds a year for five years to be distributed by the Royal Society among scientific investigators, partly as personal payment. Income tax is deducted from these grants.

Want of recognition of the value of science has been so general in this country, that it is quite pleasing to quote a somewhat different case from the _Ill.u.s.trated London News_, January 4th, 1873, viz., that of the late Archibald Smith, L.L.D., F.R.S. That gentleman was an investigator in pure mathematical science, and devoted the latter part of his life to the _application_ of mathematics in the computation, reduction, and discussion of the deviation of the mariners' compa.s.s in wooden and in iron s.h.i.+ps, and made practical deductions therefrom in the construction of those vessels.

He published those practical applications of his scientific knowledge in the form of an Admiralty Manual, which was afterwards reprinted in various languages. Her Majesty's Government {53} subsequently ”requested his acceptance of a gift of two thousand pounds, not as a reward, but as a mark of appreciation of the value of his researches, and of the influence they were exercising on the maritime interests of England and the world at large.” The kind of labour rewarded in this case was not scientific discovery, but the practical application of previously existing scientific knowledge.

The case of the late Dr. Stenhouse, F.R.S., is one of rather an opposite kind. That gentleman devoted his life throughout to pure investigations in organic chemistry, and published several of his researches in the Philosophical Transactions of the Royal Society.[9] His discoveries are very numerous, and although not much applied to practical uses by himself, the result of his researches on Lichens, and the yellow gum of Botany Bay, have been applied extensively by other persons in the manufacture of ”French purple” and picric acid, and will doubtless continue to be applied to valuable uses. He held the Government appointment of a.s.sayer to the Royal Mint, London, an office for several years unprofitable to him, but of increasing remunerative value, and which would have been subsequently worth 1,200 a year; but after the decease of his colleague, Dr. Miller, in 1870, that office, which was then worth to him about 600 a year, was abolished by the Chancellor of the Exchequer, and he lost the {54} appointment, receiving, however, 500 as compensation. An application was therefore made to the Government, and a partial recompense to him was obtained, by Her Majesty granting him one hundred pounds a year ”for eminence in chemical attainments, and on account of loss by suppression of office in the Mint.”

The only difference in these two instances, was, that in the second there was a very much greater amount of pure research and discovery, and a much smaller degree of applied knowledge.

These instances ill.u.s.trate the statement, that however great an amount of valuable knowledge in pure science a man may discover and publish, or however freely he may provide others with the materials of invention and wealth, if he never invents anything, nor applies his knowledge to useful purposes, he is usually less rewarded even than an inventor. ”The more intrinsically valuable the labour, and the greater the degree of profound original thought required to direct it, the less is it usually appreciated by the governing men of a nation.” Absorbed in exciting questions relating to political emergencies, and national matters requiring immediate attention, even men of great administrative ability fail to appreciate the less direct though more fundamental sources of a nation's happiness and wealth. In harmony with these instances also, we find that it is not the pure sciences, but the concrete and applied ones, such as meteorology, geology, natural history, &c., in the Meteorological Department, the {55} Geological Survey, the British and South Kensington Museums, the Geological Museum, &c., and the National Gallery of Art, which have received the greatest degree of support from our Governments.

That discoverers are not treated by us as we treat other valuable members of the community is quite clear; either a physician, a judge, divine, lawyer, or railway superintendent of high ability, obtain from one to many thousand pounds a year, but a discoverer in pure physics or chemistry is, in scarcely any case, paid anything for his labour. That most eminent discoverer, Faraday, received for his scientific lectures at the Royal Inst.i.tution of Great Britain, only 200 a year and apartments, during many years, and absolutely nothing for his great discoveries; and during the remainder of his life he only received a few hundred pounds per annum, including a pension of 300 pounds a year from Government. In contrast with this, the general manager of the Midland Railway has 4,000 a year. A General of our army receives 2,000, and a Field Marshal 4,000 a year (See ”Whitaker's Almanack,” 1873, pp. 121 and 138). A Head Master of either of the great public schools obtains from 3,000 a year upwards. An Archbishop of Canterbury receives 15,000 a year, besides a great amount of influence and power in the form of patronage to 183 livings, a palatial residence, and a seat in the House of Peers. A Bishop of London has 10,000, the patronage of 98 livings, and a seat in the House of Lords. I do not, {56} however, mean to imply that these large emoluments are not deserved. Whilst also there are nearly 13,000 church benefices in England (See the ”Clergy List,” also ”Whitaker's Almanack,” 1873, pp. 153 and 155, and ”Walford's County Families,” 1872, pp. 173 and 610), there is scarcely a single appointment entirely devoted to scientific discovery, nor a single professors.h.i.+p in original research in science. I leave my readers to judge to what extent these instances ill.u.s.trate the statement that discoverers are not treated by us as we treat other valuable members of the community.

Partly in consequence of the foregoing neglect, the proportion of persons wholly devoted to scientific research in this country probably does not much exceed one in one million of the population.

It is scarcely credible that in a wealthy and civilized country, whilst the non-productive cla.s.ses are protected in the enjoyment of t.i.tles and material wealth which in many cases they have not earned, the greatest scientific benefactors of the nation are constrained to live in straitened circ.u.mstances whilst working for the pecuniary and other advantages of those cla.s.ses, and of manufacturers, capitalists, land-owners, and the nation in general. By these remarks it is not intended to imply that discoverers are intentionally neglected; but that the injustice they suffer is a disgrace to this country, and reflects discredit upon the governing cla.s.ses, and especially upon those who reap the greatest advantage. {57}

The men who are rewarded highly in this country are not always those who yield the greatest service to the nation, but frequently those who render the most immediate or most apparent benefit; to stop short at this cannot produce the greatest degree of success. The national services of a great discoverer are probably not equalled by those of any man. Who can estimate the value of the commercial, social, moral, political, and other great advantages to the world, of Oersted's discovery of the principle of electro-magnetism, which enabled the invention of the electric telegraph to be made? The men we reward the highest are not those who discover knowledge, but those who use or apply it; physicians, judges, bishops, lawyers, railway managers, military and naval officers, and head masters of schools, all of them gentlemen who render great services to the nation, by using, diffusing, and applying knowledge already possessed.

It requires less rare ability to apply knowledge to new purposes by means of invention, than to discover it; it is still less difficult to diffuse it by means of tuition and lectures, because the labours of a teacher consist largely of a repit.i.tion of other men's discoveries and inventions; and to use scientific knowledge in the ordinary business of every-day life, requires a still more common degree of ability.

A chief reason why ordinary business capacity is paid for whilst original research is not, is the fact that research is not considered a necessity; many {58} persons do not perceive its immense future value. Men perform those duties first which they feel they must: they are also willing to pay for the performance of those duties which press most urgently upon them, and defer all other kinds of labour that they consider will bear postponement. Most men act upon this rule, until they acquire a habit of sacrificing the future to the present, of neglecting more important matters in order to attend to less, and of living too much for money, without sufficient regard for the more valuable condition, viz., individual and national improvement. These circ.u.mstances also largely explain the fact that it requires more pressure to induce individuals or governing bodies to aid original research than to a.s.sist any other good object. Other chief reasons why persons in general cannot perceive the great practical value of new scientific truth are, because the perception of it requires a scientifically trained mind. The greatest truths are frequently the least obvious, and are therefore valued the least.

It may be objected that research is not aided, because it sometimes takes a long time to acquire a practical shape and make it pay. We do not omit to plant an acorn because it requires many years to become an oak; we do not neglect to rear a child because he may not live to become a man; but we leave scientific discovery to take care of itself. The intense desire which exists in this country for ”quick returns” has shewn itself in the much greater readiness to aid technical education than to promote {59} permanent progress by means of original research. But the discoveries made in such a place as the Royal Inst.i.tution of Great Britain have had a vastly greater beneficial effect upon civilization than that of any technical inst.i.tution which has ever existed.

In a letter received by me from the Duke of Somerset, and which I have permission to publish, the true state of things in this country in relation to pure research is stated with remarkable accuracy and brevity:--

”The hindrances to scientific studies in this country are very many. The gentry are almost invariably educated by the clergy, and the clergy have seldom had time or opportunities for any scientific study. They usually take pupils or become tutors as soon as they have taken their degrees, and can only teach the Latin and Greek which they have themselves learned. The commercial cla.s.ses value what they call practical science; this means some application of science for the purpose of making money. Compet.i.tive examinations may promote a superficial acquaintance with the elements of science, but are unfavourable to the development of scientific culture. The scientific a.s.sociations tend to degrade science by exhibiting scientific men as candidates for applause from a.s.semblies which seek amus.e.m.e.nt and startling results from lectures and experiments. The advancement of science, is therefore, left to comparatively few men, who are unregarded and unrewarded.” {60}

To remedy this state of things we require a general encouragement of pure scientific inquiry by the State and Universities. It is thought by some persons who have given special attention to the subject, that the State ought to encourage such research and science in general, by appointing a Minister of Science possessing scientific knowledge and good administrative ability; a Scientific Council to advise our Governments in all important matters relating to science; and by establis.h.i.+ng State laboratories for pure scientific inquiry, with discoverers of repute in them wholly engaged in research in their respective subjects.

There are also many new experiments, investigations, and explorations, which neither private individuals, nor even corporate bodies, such as the Royal Society, the British a.s.sociation, Geographical Society, can effectually make, and which only a Government can carry out, such as Arctic expeditions, trigonometrical surveys, deep sea dredging operations, magnetic observations, determinations of longitude, meteorological and astronomical observations, researches on tides, observations of earthquakes, determinations of the height of mountains and the density of the crust of the earth, experiments on the best form of s.h.i.+ps, geographical explorations, and many others.

It is clear from the enormous advantages which this nation has already derived from scientific discovery in physics and chemistry, pursued with only {61} the aid of the very limited means of private persons, that had research in those subjects been sufficiently supported, the manufactures, arts, commerce, wealth, and civilization of this country would have been much greater than they are; emigration also of the industrious cla.s.ses, disease, pauperism, crime, the evil effects of famine, etc., would have been much less. The amount of knowledge and riches obtainable by means of research and invention is practically unlimited, and it is astonis.h.i.+ng that this immense source of industry and wealth in a nation should have been so neglected by our Governments. The practical value of new scientific knowledge is vastly greater than that of all our goldfields or even of our coal supply, because it would not only enable us to obtain from coal several times the amount of available heat and mechanical power we now secure, but also to apply to our wants the numerous other materials composing the crust of our globe and the contents of our oceans; also all terrestrial forces, the internal heat, the tidal energy and atmospheric currents, and the immense amount of power this Earth is continually receiving from the Sun. Whilst at present vast amounts of materials and energy remain unutilized, nearly all those terrestrial substances and forces might probably be rendered of service to us if we possessed sufficient knowledge.