Part 7 (1/2)
Tresca showed long ago that internal friction is not infinite in a solid; certain bodies can, so to speak, at once flow and be moulded.
M.W. Spring has given many examples of such phenomena. On the other hand, viscosity in liquids is never non-existent; for were it so for water, for example, in the celebrated experiment effected by Joule for the determination of the mechanical equivalent of the caloric, the liquid borne along by the floats would slide without friction on the surrounding liquid, and the work done by movement would be the same whether the floats did or did not plunge into the liquid ma.s.s.
In certain cases observed long ago with what are called pasty bodies, this viscosity attains a value almost comparable to that observed by M. Spring in some solids. Nor does rigidity allow us to establish a barrier between the two states. Notwithstanding the extreme mobility of their particles, liquids contain, in fact, vestiges of the property which we formerly wished to consider the special characteristic of solids.
Maxwell before succeeded in rendering the existence of this rigidity very probable by examining the optical properties of a deformed layer of liquid. But a Russian physicist, M. Schwedoff, has gone further, and has been able by direct experiments to show that a sheath of liquid set between two solid cylinders tends, when one of the cylinders is subjected to a slight rotation, to return to its original position, and gives a measurable torsion to a thread upholding the cylinder. From the knowledge of this torsion the rigidity can be deduced. In the case of a solution containing 1/2 per cent. of gelatine, it is found that this rigidity, enormous compared with that of water, is still, however, one trillion eight hundred and forty billion times less than that of steel.
This figure, exact within a few billions, proves that the rigidity is very slight, but exists; and that suffices for a characteristic distinction to be founded on this property. In a general way, M.
Spring has also established that we meet in solids, in a degree more or less marked, with the properties of liquids. When they are placed in suitable conditions of pressure and time, they flow through orifices, transmit pressure in all directions, diffuse and dissolve one into the other, and react chemically on each other. They may be soldered together by compression; by the same means alloys may be produced; and further, which seems to clearly prove that matter in a solid state is not deprived of all molecular mobility, it is possible to realise suitable limited reactions and equilibria between solid salts, and these equilibria obey the fundamental laws of thermodynamics.
Thus the definition of a solid cannot be drawn from its mechanical properties. It cannot be said, after what we have just seen, that solid bodies retain their form, nor that they have a limited elasticity, for M. Spring has made known a case where the elasticity of solids is without any limit.
It was thought that in the case of a different phenomenon--that of crystallization--we might arrive at a clear distinction, because here we should he dealing with a specific quality; and that crystallized bodies would be the true solids, amorphous bodies being at that time regarded as liquids viscous in the extreme.
But the studies of a German physicist, Professor O. Lehmann, seem to prove that even this means is not infallible. Professor Lehmann has succeeded, in fact, in obtaining with certain organic compounds-- oleate of pota.s.sium, for instance--under certain conditions some peculiar states to which he has given the name of semi-fluid and liquid crystals. These singular phenomena can only be observed and studied by means of a microscope, and the Carlsruhe Professor had to devise an ingenious apparatus which enabled him to bring the preparation at the required temperature on to the very plate of the microscope.
It is thus made evident that these bodies act on polarized light in the manner of a crystal. Those that M. Lehmann terms semi-liquid still present traces of polyhedric delimitation, but with the peaks and angles rounded by surface-tension, while the others tend to a strictly spherical form. The optical examination of the first-named bodies is very difficult, because appearances may be produced which are due to the phenomena of refraction and imitate those of polarization. For the other kind, which are often as mobile as water, the fact that they polarize light is absolutely unquestionable.
Unfortunately, all these liquids are turbid, and it may be objected that they are not h.o.m.ogeneous. This want of h.o.m.ogeneity may, according to M. Quincke, be due to the existence of particles suspended in a liquid in contact with another liquid miscible with it and enveloping it as might a membrane, and the phenomena of polarization would thus be quite naturally explained.[12]
[Footnote 12: Professor Quincke's last hypothesis is that all liquids on solidifying pa.s.s through a stage intermediate between solid and liquid, in which they form what he calls ”foam-cells,” and a.s.sume a viscous structure resembling that of jelly. See _Proc. Roy. Soc. A._, 23rd July 1906.--ED.]
M. Tamman is of opinion that it is more a question of an emulsion, and, on this hypothesis, the action on light would actually be that which has been observed. Various experimenters have endeavoured of recent years to elucidate this question. It cannot be considered absolutely settled, but these very curious experiments, pursued with great patience and remarkable ingenuity, allow us to think that there really exist certain intermediary forms between crystals and liquids in which bodies still retain a peculiar structure, and consequently act on light, but nevertheless possess considerable plasticity.
Let us note that the question of the continuity of the liquid and solid states is not quite the same as the question of knowing whether there exist bodies intermediate in all respects between the solids and liquids. These two problems are often wrongly confused. The gap between the two cla.s.ses of bodies may be filled by certain substances with intermediate properties, such as pasty bodies and bodies liquid but still crystallized, because they have not yet completely lost their peculiar structure. Yet the transition is not necessarily established in a continuous fas.h.i.+on when we are dealing with the pa.s.sage of one and the same determinate substance from the liquid to the solid form. We conceive that this change may take place by insensible degrees in the case of an amorphous body. But it seems hardly possible to consider the case of a crystal, in which molecular movements must be essentially regular, as a natural sequence to the case of the liquid where we are, on the contrary, in presence of an extremely disordered state of movement.
M. Tamman has demonstrated that amorphous solids may very well, in fact, be regarded as superposed liquids endowed with very great viscosity. But it is no longer the same thing when the solid is once in the crystallized state. There is then a solution of continuity of the various properties of the substance, and the two phases may co-exist.
We might presume also, by a.n.a.logy with what happens with liquids and gases, that if we followed the curve of transformation of the crystalline into the liquid phase, we might arrive at a kind of critical point at which the discontinuity of their properties would vanish.
Professor Poynting, and after him Professor Planck and Professor Ostwald, supposed this to be the case, but more recently M. Tamman has shown that such a point does not exist, and that the region of stability of the crystallized state is limited on all sides. All along the curve of transformation the two states may exist in equilibrium, but we may a.s.sert that it is impossible to realize a continuous series of intermediaries between these two states. There will always be a more or less marked discontinuity in some of the properties.
In the course of his researches M. Tamman has been led to certain very important observations, and has met with fresh allotropic modifications in nearly all substances, which singularly complicate the question. In the case of water, for instance, he finds that ordinary ice transforms itself, under a given pressure, at the temperature of -80 C. into another crystalline variety which is denser than water.
The statics of solids under high pressure is as yet, therefore, hardly drafted, but it seems to promise results which will not be identical with those obtained for the statics of fluids, though it will present at least an equal interest.
-- 4. THE DEFORMATIONS OF SOLIDS
If the mechanical properties of the bodies intermediate between solids and liquids have only lately been the object of systematic studies, admittedly solid substances have been studied for a long time. Yet, notwithstanding the abundance of researches published on elasticity by theorists and experimenters, numerous questions with regard to them still remain in suspense.
We only propose to briefly indicate here a few problems recently examined, without going into the details of questions which belong more to the domain of mechanics than to that of pure physics.
The deformations produced in solid bodies by increasing efforts arrange themselves in two distinct periods. If the efforts are weak, the deformations produced are also very weak and disappear when the effort ceases. They are then termed elastic. If the efforts exceed a certain value, a part only of these deformations disappear, and a part are permanent.
The purity of the note emitted by a sound has been often invoked as a proof of the perfect isochronism of the oscillation, and, consequently, as a demonstration _a posteriori_ of the correctness of the early law of Hoocke governing elastic deformations. This law has, however, during some years been frequently disputed. Certain mechanicians or physicists freely admit it to be incorrect, especially as regards extremely weak deformations. According to a theory in some favour, especially in Germany, i.e. the theory of Bach, the law which connects the elastic deformations with the efforts would be an exponential one. Recent experiments by Professors Kohlrausch and Gruncisen, executed under varied and precise conditions on bra.s.s, cast iron, slate, and wrought iron, do not appear to confirm Bach's law.
Nothing, in point of fact, authorises the rejection of the law of Hoocke, which presents itself as the most natural and most simple approximation to reality.
The phenomena of permanent deformation are very complex, and it certainly seems that they cannot be explained by the older theories which insisted that the molecules only acted along the straight line which joined their centres. It becomes necessary, then, to construct more complete hypotheses, as the MM. Cosserat have done in some excellent memoirs, and we may then succeed in grouping together the facts resulting from new experiments. Among the experiments of which every theory must take account may be mentioned those by which Colonel Hartmann has placed in evidence the importance of the lines which are produced on the surface of metals when the limit of elasticity is exceeded.
It is to questions of the same order that the minute and patient researches of M. Boua.s.se have been directed. This physicist, as ingenious as he is profound, has pursued for several years experiments on the most delicate points relating to the theory of elasticity, and he has succeeded in defining with a precision not always attained even in the best esteemed works, the deformations to which a body must be subjected in order to obtain comparable experiments. With regard to the slight oscillations of torsion which he has specially studied, M.