Part 8 (1/2)

Having in the last lecture examined the senses of taste and smell, I now proceed to that of hearing. As the sense of smell enables us to distinguish the small particles of matter which fly off from the surfaces of bodies, and float in the air, so that of hearing makes us acquainted with the elastic tremors or impulses of the air itself.

The sense of hearing opens to us a wide field of pleasure, and though it is less extensive in its range than that of sight, yet it frequently surmounts obstacles that are impervious to the eye, and communicates information of the utmost importance, which would otherwise escape from and be lost to the mind.

Sound arises from a vibratory or tremulous motion produced by a stroke on a sounding body, which motion that body communicates to the surrounding medium, which carries the impression forwards to the ear, and there produces its sensation. In other words, sound is the sensation arising from the impression made by a sonorous body upon the air or some other medium, and carried along by either fluid to the ear.

Three things are necessary to the production of sound; first, a sonorous body to give the impression; secondly, a medium or vehicle to convey this impression; thirdly, an organ of sense or ear to perceive it. Each of these I shall separately examine.

Strictly speaking, sonorous bodies are those whose sounds are distinct, of some duration, and which may be compared with each other, such as those of a bell or a musical string, and not such as give a confused noise, like that made by a stone falling on the pavement. To be sonorous, a body must be elastic, so that the tremors exerted by it in the air may be continued for some time: it must be a body whose parts are capable of a vibratory motion when forcibly struck.

All hard bodies, when struck return more or less of a sound; but those which are dest.i.tute of elasticity, give no repet.i.tion of the sound; the noise is at once produced and dies; while other bodies, which are more elastic and capable of vibration, repeat the sounds produced several times successively. These last are said to have a tone; the others are not allowed to have any. If we wish to give nonelastic bodies a tone, it will be necessary to make them continue their sound, by repeating our blows quickly upon them. This will effectually give them a tone; and an unmusical instrument has often by this means a fine effect in concerts. The effects of a drum depend upon this principle. Gold, silver, copper, and iron, which are elastic metals, are sonorous; but lead, which possesses scarcely any elasticity, produces little or no tone. Tin, which in itself has very little more sound than lead, highly improves the tone of copper when mixed with it. Bell metal is formed of ten parts of copper, and one of tin. Each of these is ductile when separate, though tin is only so in a small degree, yet they form when united a substance almost as brittle as gla.s.s, and highly elastic. So curious is the power of tin in this respect, that even the vapour of it, when in fusion, will give brittleness to gold and silver, the most ductile of all metals.

Sonorous bodies may be divided into three cla.s.ses; first, bells of various figures and magnitudes: of these such as are formed of gla.s.s have the most pure and elegant tones, gla.s.s being very elastic, and its sound very powerful; secondly, pipes of wood or metal; thirdly, strings formed either of metallic or animal substances. The sounds given by strings are more grave or more acute according to the thickness, length, and tension of the strings.

Air is universally allowed to be the ordinary medium of sound, or the medium by which sounds are propagated from sonorous bodies, and communicated to the ear. This may be shown by an experiment with the air pump; also with the condenser.

But though air is the general vehicle of sound, yet sound will go where no air can convey it; thus the scratching of a pin at the end of a long piece of timber may be heard by an ear applied at the other end, though it could not be heard at the same distance through the air. On this account it is that sentinels are accustomed to lay their ears to the ground, by which means they can often discover the approach of cavalry, at a much greater distance than they can see them.

For the same reason two stones being struck together under water, may be heard at a much greater distance by an ear placed under water likewise, than it can be heard through the air. Dr. Franklin, who several times made this experiment, thinks that he has heard it at a greater distance than a mile. This shows that water is better adapted to convey sound than air.

When an elastic body is struck, that body, or some part of it, is made to vibrate. This is evident to sense in the string of a violin or harpsichord, for we may perceive by the eye, or feel by the hand, the trembling of the strings, when by striking they are made to sound. If a bell be struck by a clapper on the inside, the bell is made to vibrate. The base, of the bell, is a circle, but it has been found that by striking any part of this circle on the inside, that part flies out, so that the diameter which pa.s.ses through this part of the base will be longer than the other diameter. The base, by the stroke, is changed into an ellipse or oval, whose longer axis pa.s.ses through the part against which the clapper is struck. The elasticity of the bell restores the figure of the base, and makes that part which was forced out of its place, return back to its former situation, from which the same principle throws it out again; so that the circular figure of the bell will be again changed to an ellipse, only now the shorter axis will pa.s.s through the part which was first struck.

The same stroke, which makes the bell vibrate, occasions the sound, and as the vibrations decay, the sound grows weaker. We may be convinced by our senses that the parts of the bell are in a vibratory motion while it sounds. If we lay the hand gently on it, we shall easily feel this tremulous motion, and even be able to stop it, or if small pieces of paper be put upon the bell, its vibrations will put them in motion.

These vibrations in the sounding body will cause undulations or waves in the air; and, as the motions of one fluid may often be ill.u.s.trated by those of another, the invisible motions of the air have been properly enough compared to the visible waves of water produced by throwing a stone therein. These waves spread themselves in all directions in concentric circles, whose common centre is the spot where the stone fell, and when they strike against a bank or other obstacle, they return in the contrary direction to the place from whence they proceeded. Sound in like manner expands in every direction, and the extent of its progress is in proportion to the impulse on the vibrating chord or bell.

Such is the yielding nature of fluids, that when other waves are generated near the first waves, and others again near these, they will perform their vibrations among each other without interruption; those that are coming back will pa.s.s by those that are going forwards, or even through them, without interruption: for instance, if we throw a stone into a pond, and immediately after that, another, and then a third, we shall perceive that their respective circles will proceed without interruption, and strike the banks in regular succession.

The atmosphere in the same manner possesses the faculty of conveying sounds in the most rapid succession or combination, as distinctly as they were produced. It possesses the power not only of receiving and propagating simple and compound vibrations in direct lines from the voice, or an instrument, but of retaining and repeating sounds with equal fidelity after repeated reflection and reverberation, as is evident from the sound of a French horn among hills.

Newton was the first who attempted to demonstrate that the waves or pulses of the air are propagated in all directions round a sounding body, and that during their progress and regress they are twice accelerated and twice r.e.t.a.r.ded, according to the law of a pendulum vibrating in a cycloid. These propositions are the foundation of almost all our reasoning concerning sound. When sonorous bodies are struck, they, by their vibration, excite waves in the air, similar to those caused by a stone thrown into water; some parts of these waves entering the ear, produce in us that sensation which we call sound.

How these pulsations act upon the auditory nerve, to produce sound, we know not, as we see no necessary connexion between the pulses and the sensation, nor the least resemblance between them; but we can trace their progress to a certain extent, which I shall now endeavour to do.

The external part of the ear is called the auricle, or outward ear, which is a cartilaginous funnel, connected to the bones of the temple, by means of cellular substance, and likewise by its own proper ligaments and muscles. This cartilage is of a very compound figure, being a kind of oval, marked with spirals standing up, and hollows interposed, to which other hollows and ridges correspond on the opposite side. The outer eminence is called helix. Within the body of the cartilage arises a forked eminence called antihelix, which terminates in a small and short tongue called ant.i.tragus. The remaining part of the ear, called the concha or sh.e.l.l, is anteriorly hollow, but posteriorly convex, growing gradually deeper; with a crooked line or ridge running along its middle, which is immediately joined to the meatus auditorius, or entrance into the ear; before which stands a round moveable appendix, which serves as a defense, called tragus.

Against this funnel of the ear the sonorous waves strike, and its different parts are most admirably contrived to reflect them all into the meatus auditorius: if it would not occupy too much time, it might be shown, that all these curves and spirals are contrived in the best manner possible, and with a most perfect knowledge of the geometry of sounds, to reflect the sonorous pulses accurately, and in the greatest possible quant.i.ty, into the ear.

This external part of the ear is differently formed in different animals; and admirably suited to their various situations and habits.

In man it is close to the head, but so formed as to collect the various pulses with great accuracy; in other animals it is more simple, where less accuracy is required, but it is, in general, much larger, having the appearance of an oblong funnel; and this gives them a greater delicacy of hearing, which was necessary for them.

In animals which are defenceless and timid, and which are constantly obliged to seek their safety in flight, the opening of this funnel is placed behind, that they may better hear the noises behind them. This is particularly instanced in the hare. Beasts of prey have this opening before, that they may more easily discover their prey; as the lion and tiger. Those that feed on birds have the opening directed upwards, as the fox; and it is inclined downwards in animals, such as the weasel, which seek their prey on the earth.

To this external part of the ear, which I have described, is connected the meatus auditorius, or pa.s.sage to the internal ear, which is somewhat of a compressed cylindrical figure, lessening as it bends inwards: a considerable part of it is bony, and it is bent towards the middle. Across this pa.s.sage, at its inner extremity, is stretched a thin membrane, called membrana tympani. Upon the surface of this membrane, the sonorous waves, which have been directed inwards by the external ear, strike, and cause it to vibrate like the membrane of a drum. This membrane is stretched over a cavity in the bone, called the os petrosum, which cavity is called the tympanum, or drum of the ear, which is of a rounded figure, divided in its middle by a promontory, and continued backwards to the cells of the mastoid bone. Besides this continuation of the tympanum into the mastoid cells, it has a free communication with the mouth, by means of a tube I shall soon describe.

Within this cavity of the tympanum are placed four small bones, which facilitate the hearing: the first is the malleus or hammer, so called from its shape: the upper part of its round head rests upon the concavity of the tympanum, from whence the handle is extended down, along the membrane of the tympanum; this bone has several muscles, which move it in different directions, and cause it to stretch or brace the membrana tympani, when we wish to hear with accuracy.

Connected with the malleus is another small bone, called the incus, or anvil, which is connected with another, called the stapes, or stirrup, from its shape. These two bones are connected by a small oval shaped bone, called os...o...b..culare, placed between them: the whole forming a little chain of bones.

The stapes, or stirrup, has its end of an oval shape, which fits a small hole called fenestra ovalis, in that part of the ear called the labyrinth, or innermost chamber of the ear.

The labyrinth consists of three parts; first, the vestibule, which is a round cavity in a hard part of the os petrosum; secondly, the semicircular ca.n.a.ls, so called from their shape, which however is not exactly semicircular; thirdly, the cochlea, which is a beautifully convoluted ca.n.a.l, like the sh.e.l.l of a snail. This part has a round cavity called fenestra rotunda, which is covered with a thin elastic membrane, and looks into the tympanum.

The vestibule, semicircular ca.n.a.ls, and cochlea, the whole of which is called the labyrinth, form one cavity, which is filled with a very limpid fluid resembling water, and the whole lined with a fine delicate membrane, upon which the auditory nerve is expanded, like the retina upon the vitreous humor of the eye. This beautiful apparatus was only lately discovered by an Italian physician, Scarpa.