Part 4 (1/2)

[Ill.u.s.tration: FIG. 12.--Waterproofing of cellar walls.]

Another method is to paint the masonry with liquid asphalt, and then imbed in this paint a thickness of asphalt-covered building paper which is again painted with asphalt. This may be done in the horizontal layer where it could not conveniently be done vertically.

Four different ways used in France for securing dry cellar walls are shown in Fig. 11. The heavy black line represents the damp course, which, when added to the effect of the interwall s.p.a.ce, which is shown in all the drawings but the first, and there replaced by a deep drain, insures absolute freedom from all moisture within the cellar. Figure 12 shows sections recommended by Dr. George M. Price, and indicates clearly the location of the damp course.

_The cellar floor._

The floor of the cellar, in the same way, must be kept from dampness, and this is best done by covering the cellar floor with a layer of concrete, one part cement, three parts sand, and six parts broken stone; or, one part cement and eight parts gravel may be used. Care should be taken, however, that the gravel does not contain an excess of sand, and it is always well in using gravel for concrete to check the proportion of these two materials. This may be done as follows: Sift the gravel through an ash sieve so that it is free from sand; fill a ten-quart pail even full with the gravel and then pour in water to the top of the pail, keeping account of the amount of water poured in. This volume of water gives the proper amount of sand to use with the gravel for concrete, and if more sand than this was present in the original gravel, it should be sifted out until the proper proportion is reached.

Concrete is not water-tight, and the concrete floor of the cellar must be treated in some way to prevent water or moisture rising through this floor. One method is to cover the concrete thus laid with a denser mixture of cement and sand, put on three fourths of an inch thick, and made by mixing equal parts of sand and cement; or the asphalt layer already referred to in the cellar walls may be carried across the cellar, putting, as before, a paint layer on the concrete, then paper, then another paint layer, making it continuous and without a break from outside to outside. On top of this, to prevent wear and tear, a floor of brick, laid flat, or a two-inch layer of concrete may be laid.

_Cellar ventilation._

The great importance of the cellar as that part of the house where, if anywhere, unhealthy conditions exist, justifies this prolonged discussion, and before leaving the subject, ventilation in the cellar should receive a word of encouragement. Too many cellars are damper than need be, are musty and close, full of odors of decaying vegetables and rotting wood, entirely from lack of ventilation. The cellar windows are small and always, closed. The cellar door is seldom opened, and never with the idea of admitting air. The impression on entering such a cellar is of a tomb.

The cellar, even in that part devoted to storing vegetables, needs ventilation as much as the house does, for the cellar air finds its way up into the house, and an unventilated cellar means a house with air deficient in oxygen and overloaded with carbonic acid, a condition which causes pale faces and anaemic bodies. Far better and healthier is it to open all the cellar windows, covering them with coa.r.s.e netting to keep out animals and with fine netting to keep out insects, and let the disease-killing oxygen and sunlight in. Malaria comes from the cellar, whenever the malarial mosquito can find there a breeding place. The writer has seen many cellars in which mosquitoes were living the year through in entire comfort, utilizing the moisture and warmth of the cellar to enjoy the winter months and up and ready for their mission at the first sign of spring. A cistern in the cellar is objectionable on this account, and if one exists, it should be covered with mosquito netting.

_The old-fas.h.i.+oned privy._

Another source of ill-health as well as of temporary discomfort is the typical construction and continued use of an outside closet or privy.

The physical shrinking from the use of the ordinary building is most reasonable. As generally constructed, great draughts of air (presumably for ventilation) are continually pa.s.sing through the small building, and when the temperature of the outside air is at zero, or thereabouts, only the strongest physique can withstand the exposure involved without serious danger of consumption, influenza, and pneumonia, or at least inviting those diseases by reducing the vitality of the body. Two improvements suggest themselves and should be put into effect wherever this primitive construction must continue to be used.

In the first place, the building itself should not be fifty or a hundred feet away from the house, so that every one is exposed to rain, snow, slush, and ice in making the journey thither. But some corner of the woodshed or barn should be utilized or the small building should be moved up by the back door and connected therewith by a roofed pa.s.sage.

The barn location is objectionable if it involves outdoor exposure in going from the house to the barn. A liberal use of earth in the privy vault will eliminate odors, and a water-tight box or bucket makes a frequent removal of the night soil practicable.

In the second place, a small stove ought to be provided to warm the closet in the coldest weather. Then the dislike to suffer from the cold, which leads so many to postpone nature's call, will be avoided, and the consequent digestive disorders which come from constipation and intestinal fermentations prevented.

_Cow stables._

In matters of health, aside from ventilation, which is discussed in the next chapter, there is little to be said concerning the other buildings on the farm. Barns for hay are not involved. A few words may profitably be devoted to barns for stock, involving, as they do, by their construction, the health of the stock. One enthusiastic farmer writes that it is possible for farmers to keep their stock at all times under conditions which are an improvement upon the month of June. He believes that the cow stable should be as comfortable for the cows as the house is for the owner, subject to no fluctuations of temperature, and that, in this way, the health as well as the comfort and milk production of the cows would be maintained.

Light should be listed as the first essential of healthy stables, light to kill disease-producing bacteria, to make dirty corners and holes impossible, and to react on the vitality of the animals. Compare this with some stables where fifteen, twenty, or thirty head are stabled in an underground dugout with two or three small windows not giving more than four square feet in all. Stable windows should be set, like house windows, in two sashes and capable of being raised or lowered at will.

In winter a large sash may be screwed over the regular window to keep out frost and moisture, provided there is some independent method of ventilation.

For good healthy conditions, a cow needs about 500 cubic feet of s.p.a.ce, with active ventilation. In old stables, with poor construction, as little as 200 cubic feet per cow was allowed, and when stables were made tight with matched boards and building paper, 200 cubic feet was found to be too small, and it was recommended that one cubic foot be allowed for each pound of cow. But when tried by wealthy amateurs, it was found that this was too large; the stables were damp and cold in winter and became a predisposing factor in the development of tuberculosis. Between the two extremes, 200 and 1000, is the practical average named above, namely, 500 cubic feet of air s.p.a.ce for each cow.

For the health of the cow as well as for the good quality of the milk the stable should be built with special reference to being kept clean.

The ceiling should be dust-tight, so that if hay is stored above, it will not sift through. The part of the barn where the cows are kept should be separated from the rest of the barn by tight part.i.tions and a door into the cow stable. Nothing dusty or dirty should acc.u.mulate. The floor of all stables for cows, horses, hens, and pigs should be of concrete to insure the most sanitary construction. Planks absorb liquids and wear out rapidly under the feet of the stock. Concrete can be kept clean, is nonabsorptive, and if covered with some non-conducting material, like sawdust, shavings, or straw, is a perfectly comfortable floor for the animals.

_Use of concrete._

No development of recent times has tended more toward the improvement and greater comfort of house building than the use of concrete. In the earlier houses, the cellar walls were so badly built and the connection between the top of the cellar wall and the timber sill of the house was so poor that the winter's wind blew through above to the manifest discomfort of those in the house. The writer remembers sitting in the best room of a well-to-do farmer, and watching, with great interest, the carpet rise and fall with the gusts of wind outside. To avoid such unhappy consequences, farmers have been accustomed to bank up the house outdoors in the fall with dry leaves, spruce-boughs, or manure, usually to a point on the woodwork. This, of course, closes the cellar windows for the winter for the sake of keeping out the wind. A concrete wall, at the present price of cement, using gravel for the mixture instead of stone, need cost but little more than the price of the cement and the labor involved, and a tight cellar wall may thereby be obtained.

If the soil in which the cellar is dug is firm enough, the outside of the excavation can be made so that no form on that side will be required, but it is always better to make the excavation about two feet more than necessary, to put forms inside and outside, and, after their removal, plaster or wash the wall with a thick cream of cement and water. In carrying the wall above the ground, forms must be used with great care to secure a smooth surface, and Fig. 13 shows two methods suggested by the Atlas Cement Company.

[Ill.u.s.tration: Fig. 13.--Cellar-wall forms.]