Part 2 (1/2)
Example 2.
Many books on philosophy are boring.
This book is a book on philosophy.
This book is boring.
In this example, (3) does not follow of necessity from (1) and (2). Even if (1) and (2) are true, then this book might yet turn out to be one of the minority of books on philosophy that are not boring. Accepting (1) and (2) as true and holding (3) to be false does not involve a contradiction. The argument is invalid.
The reader may by now be feeling bored. Experiences of that kind certainly have a bearing on the truth of statements (1) and (3) in Example 1 and Example 2. But a point that needs to be stressed here is that logical deduction alone cannot establish the truth of factual statements of the kind figuring in our examples. All that logic can offer in this connection is that if the premises are true and the argument is valid then the conclusion must be true. But whether the premises are true or not is not a question that can be settled by an appeal to logic. An argument can be a perfectly valid deduction even if it involves a false premise. Here is an example.
Example 3.
All cats have five legs.
Bugs p.u.s.s.y is my cat.
Bugs p.u.s.s.y has five legs.
This is a perfectly valid deduction. If (1) and (2) are true then (3) must be true. It so happens that, in this example (1) and (3) are false. But this does not affect the fact that the argument is valid.
There is a strong sense, then, in which logic alone is not a source of new truths. The truth of the factual statements that 'const.i.tute the premises of arguments cannot be established by appeal to logic. Logic can simply reveal what follows from, or what in a sense is already contained in, the statements we already, have to hand. Against this limitation we have the great strength of logic, namely, its truth-preserving character. If we can be sure our premises are true then we can be equally sure that everything we logically derive from them will also be true.
Can scientific laws be derived from the facts?
With this discussion of the nature of logic behind us, it can be straightforwardly shown that scientific knowledge cannot be derived from the facts if ”derive” is interpreted as ”logically deduce”.
Some simple examples of scientific knowledge will be sufficient for the ill.u.s.tration of this basic point. Let us consider some low-level scientific laws such as ”metals expand when heated” or ”acids turn litmus red”. These are general statements. They are examples of what philosophers refer to as universal statements. They refer to all events of a particular kind, all instances of metals being heated and all instances of litmus being immersed in acid. Scientific knowledge invariably involves general statements of this kind. The situation is quite otherwise when it comes to the observation statements that const.i.tute the facts that provide the evidence for general scientific laws. Those observable facts or experimental results are specific claims about a state of affairs that obtains at a particular time. They are what philosophers call singular statements. They include statements such as ”the length of the copper bar increased when it was heated” or ”the litmus paper turned red when immersed in the beaker of hydrochloric acid”. Suppose we have a large number of such facts at our disposal as the basis from which we hope to derive some scientific knowledge (about metals or acids in the case of our examples). What kind of argument can take us from those facts, as premises, to the scientific laws we seek to derive as conclusions? In the case of our example concerning the expansion of metals the argument can be schematised as follows: Premises 1. Metal x1 expanded when heated on occasion t1.
2. Metal x2 expanded when heated on occasion t2.
n. Metal x0 expanded when heated on occasion tn.
Conclusion: All metals expand when heated.
This is not a logically valid argument. It lacks the basic features of such an argument. It is simply not the case that if the statements const.i.tuting the premises are true then the conclusion must be true. However many observations of expanding metals we have to work with, that is, however great n might be in our example, there can be no logical guarantee that some sample of metal might on some occasion contract when heated. There is no contradiction involved in claiming both that all known examples of the heating of metals has resulted in expansion and that ”all metals expand when heated” is false.
This straightforward point is ill.u.s.trated by a somewhat gruesome example attributed to Bertrand Russell. It concerns a turkey' who noted on his first morning at the turkey farm that he was fed at 9 am. After this experience had been repeated daily for several weeks the turkey felt safe,in drawing the conclusion ”I am always fed at 9 am”. Alas, this conclusion was shown to be false in no uncertain manner when, on Christmas eve, instead of being fed, the turkey's throat was cut. The turkey's argument led it from a number of true observations to a false conclusion, clearly indicating the invalidity of the argument from a logical point of view.
Arguments of the kind I have ill.u.s.trated with the example concerning the expansion of metals, which proceed from a finite number of specific facts to a general conclusion, are called inductive arguments, as distinct from logical, deductive A 23 unients. A characteristic of inductive arguments that distinguishes them from deductive ones is that, by proceeding as they do from statements about some to statements about all events of a particular kind, they go beyond what is contained in the premises. General scientific laws invariably go beyond the finite amount of observable evidence that is available to support them, and that is why they can never be proven in the sense of being logically deduced from that evidence.
What const.i.tutes a good inductive argument?
We have seen that if scientific knowledge is to be understood as being derived from the facts, then ”derive” must be understood in an inductive rather than a deductive sense. But what are the characteristics of a good inductive argument? The question is of fundamental importance because it is clear that not all generalisations from the observable facts are warranted. Some of them we will wish to regard as overliSty or based on insufficient evidence, as when, perhaps, we condemn the attribution of some characteristic to an entire ethnic group based on some unpleasant encounters with just one pair of neighbours. Under precisely what circ.u.mstances is it legitimate to a.s.sert that a scientific law has been ”derived” from some finite body of observational and experimental evidence?
A first attempt at an answer to this question involves the demand that, if an inductive inference from observable facts to laws is to be justified, then the following conditions must e satisfied: The number of observations folining the basis of a generalisation must be large.
The observations must be repeated under a wide variety of conditions.
No accepted observation statement should conflict with the derived law.
Condition 1 is regarded as necessary because it is clearly not legitimate to conclude that all metals expand when heated on the basis of just one observation of an iron bar's expansion, say, any more than it is legitimate to conclude that all Australians are drunkards on the basis of one observation of an intoxicated Australian. A large number of independent observations would appear to be necessary before either generalisation can be justified. A good inductive argument does not jump to conclusions.
One way of increasing the number of observations in the examples mentioned would be to repeatedly heat a single bar of metal or to continually observe a particular Australian getting drunk night after night, and perhaps morning after morning. Clearly, a list of observation statements acquired in such a way would form a very unsatisfactory basis for the respective generalisations. That is why condition 2 is necessary. ”All metals expand when heated” will be a legitimate generalisation only if the observations of expansion on which it is based range over a wide variety of conditions. Various kinds of metals should be heated, long bars, short bars, silver bars, copper bars etc. should be heated at high and low pressures and high and low temperatures and so on. Only if on all such occasions expansion results is it legitimate to generalise by induction to the general law. Further, it is evident that if a particular sample of metal is observed not to expand when heated, then the generalisation to the law will not be justified. Condition 3 is essential.
The above can be summed up by the following statement of the principle of induction.
If a large number of A's have been observed under a wide variety , of ct ind 'Lions, and if all those A's without exception possess the property B, then all A's have the property B.
There are serious problems with this characterisation of induction. Let us consider condition 1, the demand for large numbers of observations. One problem with it is the vagueness of ”large”. Are a hundred, a thousand or more observations required? If we do attempt to introduce precision by introducing a number here, then there would surely be a great deal of arbitrariness in the number chosen. The problems do not stop here. There are many instances in which the demand for a large number of instances seems inappropriate. To ill.u.s.trate this, consider the strong public reaction against nuclear warfare that was provoked by the dropping of the first atomic bomb on Hiros.h.i.+ma towards the end of the Second World War. That reaction was based on the realisation of the extent to which atomic bombs cause widespread destruction and human suffering. And yet this widespread, and surely reasonable, belief was based on just one dramatic observation. In similar ein, it would be a very stubborn investigator who insisted on putting his hand in the fire many times before concluding that fire burns. Let us consider a less fanciful example related to scientific practice. Suppose I reproduced an experiment reported in some recent scientific journal, and sent my results off for publication. Surely the editor of the journal would reject my paper, explaining that the experiment had already been done! Condition 1 is riddled with problems.
Condition 2 has serious problems too, stemming from difficulties surrounding the question of what counts as a significant variation in circ.u.mstances. What counts as a significant variation in the circ.u.mstances under which the expansion of a heated metal is to be investigated? Is it neeessary to vary the type of metal, the pressure and the time of day? The answer is ”yes” in the first and possibly the seconsd case but ”no” in the third. But what are the grounds for that answer? The question is important because unless it can be answered the list of variations can be extended indefinitely by endlessly adding further variations, such as the size of the laboratory id the colour of the experimenter's socks. Unless such ”sulTanous” variations can be eliminated, the conditions under which an inductive inference can be accepted can never be satisfied. What are the grounds, then, for regarding a range of possible variations as superfluous? The commonsense answer is straightforward enough. We draw on our prior knowledge of the situation to distinguish between the factors thaiMightandihoSe that cannot influence the system we are investigating. It is our knowledge of metals and the kinds of ways that they can be acted on that leads us to the expectation that their physical behaviour will depend on the type of metal and the surrounding pressure but not on the time of day or the colour of the experimenter's socks. We draw on our current stock of knowledge to help judge what is a relevant circ.u.mstance that might need to be varied when investigating the generality of an effect under investigation.
This response to the problem is surely correct. However, it poses a problem for a sufficiently strong version of the claim that scientific knowledge should be derived from the facts by induction. The problem arises when we pose the question of how the knowledge appealed to when judging the relevance or otherwise of some circ.u.mstances to a phenomenon under investigation (such as the expansion of metals) is itself vindicated. If we demand that that knowledge itself is to be arrived at by induction, then our problem will recur, because those further inductive arguments will themselves require the specification of the relevant circ.u.mstances and so on. Each inductive argument involves an appeal to prior knowledge, which needs an inductive argument to justify it, which involves an appeal to further prior knowledge and so on in a never-ending chain. The demand that all knowledge be justifled by induction becomes a demand that cannot be met.
Even Condition 3 is problematic since little scientific knowledge would survive the demand that there be no known exceptions. This is a point that will be discussed in some detail in chapter 7.
Further problems with inductivism.
Let us call the position according to which scientific knowledge is to be derived from the observable facts by some kind of inductive inference inductivism and those who subscribe to that view inductiuists. We have already pointed to a serious problem inherent in that view, namely, the problem of stating precisely under what conditions a generalisation const.i.tutes a good inductive inference. That is, it is not clear what induction amounts to. There are further problems with the inductivist position.
If we take contemporary scientific knowledge at anything like face value, then it has to be admitted that much of that knowledge refers to the un.o.bservable. It refers to such things as protons and electrons, genes and DNA molecules and so on. How can such knowledge be accommodated into the inductivist position? Insofar as inductive reasoning involves some kind of generalisation from observable facts, it would appear that such reasoning is not capable of yielding knowledge of the un.o.bservable. Any generalisation from facts about the observable world can yield nothing other than generalisations about the observable world. Consequently, scientific knowledge of the un.o.bservable world can never be established by the kind of inductive reasoning we have discussed. This leaves the inductivist in the uncomfortable position of having to reject much contemporary science on the grounds that it involves going beyond what can be justified by inductive generalisation from the observable.