Part 4 (2/2)
[Footnote 141: The two standard lives of Tycho Brahe are the _Vita Tychonis Brahei_ by Ga.s.sendi (1655) till recently the sole source of information, and Dreyer's _Tycho Brahe_ (1890) based not only on Ga.s.sendi but on the doc.u.mentary evidence disclosed by the researches of the 19th century. For Tycho's works I have used the _Opera Omnia_ published at Frankfort in 1648. The Danish Royal Scientific Society has issued a reprint (1901) of the rare 1573 edition of the _De Nova Stella_.]
[Footnote 142: Bridges: 206.]
His life[143] was a somewhat romantic one. Born of n.o.ble family on December 14th, 1546, at Knudstrup in Denmark, Tyge Brahe, the second of ten children,[144] was early practically adopted by his father's brother. His family wished him to become a statesman and sent him in 1559 to the university at Copenhagen to prepare for that career. A partial eclipse of the sun on August 21st, 1560 as foretold by the astronomers thrilled the lad and determined him to study a science that could foretell the future and so affect men's lives.[145] When he was sent to Leipsic with a tutor in 1562 to study law, he devoted his time and money to the study of mathematics and astronomy. Two years later when eighteen years of age, he resolved to perform anew the task of Hipparchos and Ptolemy and make a catalogue of the stars more accurate than theirs. His family hotly opposed these plans; and for six years he wandered through the German states, now at Wittenberg, now at Rostock (where he fought the duel in which he lost part of his nose and had to have it replaced by one of gold and silver)[146] or at Augsburg--everywhere working on his chosen subjects. But upon his return to Denmark (1570) he spent two years on chemistry and medicine, till the startling appearance of the New Star in the constellation of Ca.s.siopaea (November, 1572) recalled him to what became his life work.[147]
[Footnote 143: Dreyer: 11-84.]
[Footnote 144: Ga.s.sendi: 2.]
[Footnote 145: Dreyer: 13.]
[Footnote 146: Ga.s.sendi: 9-10.]
[Footnote 147: Dreyer: 38-44.]
Through the interest and favor of King Frederick II, he was given the island of Hveen near Elsinore, with money to build an observatory and the pledge of an annual income from the state treasury for his support.[148] There at Uraniborg from 1576 to 1597 he and his pupils made the great catalogue of the stars, and studied comets and the moon. When he was forced to leave Hveen by the hostility and the economical tendencies of the young king,[149] after two years of wandering he accepted the invitation of the Emperor Rudolphus and established himself at Prague in Bohemia. Among his a.s.sistants at Prague was young Johann Kepler who till Tycho's death (on October 24, 1601) was his chief helper for twenty months, and who afterwards completed his observations, publis.h.i.+ng the results in the Rudolphine Tables of 1627.
[Footnote 148: Ibid: 84.]
[Footnote 149: Ibid: 234-5.]
This ”Phoenix among Astronomers”--as Kepler calls him,[150]--was the father of modern practical astronomy.[151] He also propounded a third system of the universe, a compromise between the Ptolemaic and the Copernican. In this the Tychonic system,[152] the earth is motionless and is the center of the orbits of the sun, the moon, and the sphere of the fixed stars, while the sun is the center of the orbits of the five planets.[153] Mercury and Venus move in orbits with radii shorter than the sun's radius, and the other three planets include the earth within their circuits. This system was in harmony with the Bible and accounted as satisfactorily by geometry as either of the other two systems for the observed phenomena.[154] To Tycho Brahe, the Ptolemaic system was too complex,[155] and the Copernican absurd, the latter because to account for the absence of stellar parallax it left vacant and purposeless a vast s.p.a.ce between Saturn and the sphere of the fixed stars,[156] and because Tycho's observations did not show any trace of the stellar parallax that must exist if the earth moves.[157]
[Footnote 150: Kepler: _Tabulae Rudolphinae_. t.i.tle page.]
[Footnote 151: Dreyer: 317-363.]
[Footnote 152: As stated in his Book on the Comet of 1577 (pub.
1588).]
[Footnote 153: Dreyer: 168-9.]
[Footnote 154: Schiaparelli in Snyder: 165.]
[Footnote 155: Brahe: _Op. Om._, pt. I, p. 337.]
[Footnote 156: Ibid: 409-410.]
[Footnote 157: The Tychonic system has supporters to this day. See chap. viii.]
Though Tycho thus rejected the Copernican theory, his own proved to be the stepping stone toward the one he rejected,[158] for by it and by his study of comets he completely destroyed the ideas of solid crystalline spheres to the discredit of the scholastics; and his promulgation of a third theory of the universe helped to diminish men's confidence in authority and to stimulate independent thinking.
[Footnote 158: Dreyer: 181.]
Copernicus worked out his system by mathematics with but slight aid from his own observations. It was a theory not yet proven true. Tycho Brahe, though denying its validity, contributed in his ma.s.s of painstaking, accurate observations the raw material of facts to be worked up by Kepler into the great laws of the planets attesting the fundamental truth of the Copernican hypothesis.
<script>