Part 20 (1/2)

In this circle A.B.C.D, I haue drawen first the diameter, whiche is A.D, whiche pa.s.seth (as it must) by the centre E, Then haue I drawen ij. other lines as M.N, whiche is neerer the centre, and F.G, that is farther from the centre. The fourth line also on the other side of the diameter, that is B.C, is neerer to the centre then the line F.G, for it is of lyke distance as is the lyne M.N. Nowe saie I, that A.D, beyng the diameter, is the longest of all those lynes, and also of any other that maie be drawen within that circle, And the other line M.N, is longer then F.G. Also the line F.G, is shorter then the line B.C, for because it is farther from the centre then is the lyne B.C. And thus maie you iudge of al lines drawen in any circle, how to know the proportion of their length, by the proportion of their distance, and contrary waies, howe to discerne the proportion of their distance by their lengthes, if you knowe the proportion of their length. And to speake of it by the waie, it is a maruaylouse thyng to consider, that a man maie knowe an exacte proportion betwene two thynges, and yet can not name nor attayne the precise quant.i.tee of those two thynges, As for exaumple, If two squares be sette foorthe, whereof the one containeth in it fiue square feete, and the other contayneth fiue and fortie foote, of like square feete, I am not able to tell, no nor yet anye manne liuyng, what is the precyse measure of the sides of any of those .ij. squares, and yet I can proue by vnfallible reason, that their sides be in a triple proportion, that is to saie, that the side of the greater square (whiche containeth .xlv. foote) is three tymes so long iuste as the side of the lesser square, that includeth but fiue foote. But this seemeth to be spoken out of ceason in this place, therfore I will omitte it now, reseruyng the exacter declaration therof to a more conuenient place and time, and will procede with the residew of the Theoremes appointed for this boke.

_The .lxi. Theoreme._

If a right line be drawen at any end of a diameter in perpendicular forme, and do make a right angle with the diameter, that right line shall light without the circle, and yet so iointly knitte to it, that it is not possible to draw any other right line betwene that saide line and the circ.u.mfer?ce of the circle. And the angle that is made in the semicircle is greater then any sharpe angle that may be made of right lines, but the other angle without, is lesser then any that can be made of right lines.

_Example._

[Ill.u.s.tration]

In this circle A.B.C, the diameter is A.C, the perpendicular line, which maketh a right angle with the diameter, is C.A, whiche line falleth without the circle, and yet ioyneth so exactly vnto it, that it is not possible to draw an other right line betwene the circ.u.mference of the circle and it, whiche thyng is so plainly seene of the eye, that it needeth no farther declaracion. For euery man wil easily consent, that betwene the croked line A.F, (whiche is a parte of the circ.u.mfer?ce of the circle) and A.E (which is the said perp?dicular line) there can none other line bee drawen in that place where they make the angle. Nowe for the residue of the theoreme. The angle D.A.B, which is made in the semicircle, is greater then anye sharpe angle that may bee made of ryghte lines. and yet is it a sharpe angle also, in as much as it is lesser then a right angle, which is the angle E.A.D, and the residue of that right angle, which lieth without the circle, that is to saye, E.A.B, is lesser then any sharpe angle that can be made of right lines also. For as it was before rehersed, there canne no right line be drawen to the angle, betwene the circ.u.mference and the right line E.A. Then must it needes folow, that there can be made no lesser angle of righte lines. And againe, if ther canne be no lesser then the one, then doth it sone appear, that there canne be no greater then the other, for they twoo doo make the whole right angle, so that if anye corner coulde be made greater then the one parte, then shoulde the residue bee lesser then the other parte, so that other bothe partes muste be false, or els bothe graunted to be true.

_The lxij. Theoreme._

If a right line doo touche a circle, and an other right line drawen frome the centre of the circle to the pointe where they touche, that line whiche is drawenne frome the centre, shall be a perpendicular line to the touch line.

_Example._

[Ill.u.s.tration]

The circle is A.B.C, and his centre is F. The touche line is D.E, and the point wher they touch is C. Now by reason that a right line is drawen frome the centre F. vnto C, which is the point of the touche, therefore saith the theoreme, that the sayde line F.C, muste needes bee a perpendicular line vnto the touche line D.E.

_The lxiij. Theoreme._

If a righte line doo touche a circle, and an other right line be drawen from the pointe of their touchinge, so that it doo make righte corners with the touche line, then shal the centre of the circle bee in that same line, so drawen.

_Example._

[Ill.u.s.tration]

The circle is A.B.C, and the centre of it is G. The touche line is D.C.E, and the pointe where it toucheth, is C. Nowe it appeareth manifest, that if a righte line be drawen from the pointe where the touch line doth ioine with the circle, and that the said lyne doo make righte corners with the touche line, then muste it needes go by the centre of the circle, and then consequently it must haue the sayde c?tre in him. For if the saide line shoulde go beside the centre, as F.C. doth, then dothe it not make righte angles with the touche line, which in the theoreme is supposed.

_The lxiiij. Theoreme._

If an angle be made on the centre of a circle, and an other angle made on the circ.u.mference of the same circle, and their grounde line be one common portion of the circ.u.mference, then is the angle on the centre twise so great as the other angle on the circufer?ce.

_Example._

[Ill.u.s.tration]

The circle is A.B.C.D, and his centre is E: the angle on the centre is C.E.D, and the angle on the circ.u.mference is C.A.D t their commen ground line, is C.F.D. Now say I that the angle C.E.D, whiche is on the centre, is twise so greate as the angle C.A.D, which is on the circ.u.mference.

_The lxv. Theoreme._

Those angles whiche be made in one cantle of a circle, must needes be equal togither.

_Example._