Part 4 (2/2)
I have endeavoured to collect every fact, which might either invalidate or corroborate this conclusion. Captain Moresby, whose opportunities for observation during his survey of the Maldiva and Chagos Archipelagoes have been unrivalled, informs me, that the upper part or zone of the steep-sided reefs, on the inner and outer coasts of the atolls in both groups, invariably consists of coral, and the lower parts of sand. At seven or eight fathoms depth, the bottom is formed, as could be seen through the clear water, of great living ma.s.ses of coral, which at about ten fathoms generally stand some way apart from each other, with patches of white sand between them, and at a little greater depth these patches become united into a smooth steep slope, without any coral. Captain Moresby, also, informs me in support of his statement, that he found only decayed coral on the Padua Bank (northern part of the Laccadive group) which has an average depth between twenty-five and thirty-five fathoms, but that on some other banks in the same group with only ten or twelve fathoms water on them (for instance, the Tillacapeni bank), the coral was living.
With regard to the coral-reefs in the Red Sea, Ehrenberg has the following pa.s.sage:--”The living corals do not descend there into great depths. On the edges of islets and near reefs, where the depth was small, very many lived; but we found no more even at six fathoms. The pearl-fishers at Yemen and Ma.s.saua a.s.serted that there was no coral near the pearl-banks at nine fathoms depth, but only sand. We were not able to inst.i.tute any more special researches.” (Ehrenberg, ”Uber die Natur,” etc., page 50.) I am, however, a.s.sured both by Captain Moresby and Lieutenant Wellstead, that in the more northern parts of the Red Sea, there are extensive beds of living coral at a depth of twenty-five fathoms, in which the anchors of their vessels were frequently entangled. Captain Moresby attributes the less depth, at which the corals are able to live in the places mentioned by Ehrenberg, to the greater quant.i.ty of sediment there; and the situations, where they were flouris.h.i.+ng at the depth of twenty-five fathoms, were protected, and the water was extraordinarily limpid. On the leeward side of Mauritius where I found the coral growing at a somewhat greater depth than at Keeling atoll, the sea, owing apparently to its tranquil state, was likewise very clear. Within the lagoons of some of the Marshall atolls, where the water can be but little agitated, there are, according to Kotzebue, living beds of coral in twenty-five fathoms. From these facts, and considering the manner in which the beds of clean coral off Mauritius, Keeling Island, the Maldiva and Chagos atolls, graduated into a sandy slope, it appears very probable that the depth, at which reef-building polypifers can exist, is partly determined by the extent of inclined surface, which the currents of the sea and the recoiling waves have the power to keep free from sediment.
MM. Quoy and Gaimard (”Annales des Sci. Nat.” tom. vi.) believe that the growth of coral is confined within very limited depths; and they state that they never found any fragment of an Astraea (the genus they consider most efficient in forming reefs) at a depth above twenty-five or thirty feet.
But we have seen that in several places the bottom of the sea is paved with ma.s.sive corals at more than twice this depth; and at fifteen fathoms (or twice this depth) off the reefs of Mauritius, the arming was marked with the distinct impression of a living Astraea. Millepora alcicornis lives in from 0 to 12 fathoms, and the genera Madrepora and Seriatopora from 0 to 20 fathoms. Captain Moresby has given me a specimen of Sideropora scabra (Porites of Lamarck) brought up alive from 17 fathoms. Mr. Couthouy (”Remarks on Coral Formations,” page 12.) states that he has dredged up on the Bahama banks considerable ma.s.ses of Meandrina from 16 fathoms, and he has seen this coral growing in 20 fathoms. A Caryophyllia, half an inch in diameter, was dredged up alive from 80 fathoms off Juan Fernandez (lat.i.tude 33 deg S.) by Captain P.P. King (I am indebted to Mr. Stokes for having kindly communicated this fact to me, together with much other valuable information.): this is the most remarkable fact with which I am acquainted, showing the depth at which a genus of corals often found on reefs, can exist.
We ought, however, to feel less surprise at this fact, as Caryophyllia alone of the lamelliform genera, ranges far beyond the tropics; it is found in Zetland (Fleming's ”British Animals,” genus Caryophyllia.) in Lat.i.tude 60 deg N. in deep water, and I procured a small species from Tierra del Fuego in Lat.i.tude 53 deg S. Captain Beechey informs me, that branches of pink and yellow coral were frequently brought up from between twenty and twenty-five fathoms off the Low atolls; and Lieutenant Stokes, writing to me from the N.W. coast of Australia, says that a strongly branched coral was procured there from thirty fathoms; unfortunately it is not known to what genera these corals belong.
(I will record in the form of a note all the facts that I have been able to collect on the depths, both within and without the tropics, at which those corals and corallines can live, which there is no reason to suppose ever materially aid in the construction of a reef.
(In the following list the name of the Zoophyte is followed by the depth in fathoms, the country and degrees S. lat.i.tude, and the authority. Where no authority is given, the observation is Darwin's own.)
SERTULARIA, 40, Cape Horn 66.
CELLARIA, 40, Cape Horn 66.
CELLARIA, A minute scarlet encrusting species, found living, 190, Keeling Atoll, 12.
CELLARIA, An allied, small stony sub-generic form, 48, St Cruz Riv. 50.
A coral allied to VINCULARIA, with eight rows of cells, 40, Cape Horn.
TUBULIPORA, near to T. patima, 40, Cape Horn.
TUBULIPORA, near to T. patima, 94, East Chiloe 43.
CELLEPORA, several species, and allied sub-generic forms, 40, Cape Horn.
CELLEPORA, several species, and allied sub-generic forms, 40 and 57, Chonos Archipelago 45.
CELLEPORA, several species, and allied sub-generic forms, 48, St Cruz 50.
ESCHARA, 30, Tierra del Fuego 53.
ESCHARA, 48, St Cruz R. 50.
RETEPORA, 40, Cape Horn.
RETEPORA, 100, Cape of Good Hope 34, Quoy and Gaimard, ”Ann. Scien. Nat.”
tome vi., page 284.
MILLEPORA, a strong coral with cylindrical branches, of a pink colour, about two inches high, resembling in the form of its orifices M. aspera of Lamarck, 94 and 30, E. Chiloe 43, Tierra del Fuego 53.
CORALIUM, 120, Barbary 33 N., Peyssonel in paper read to Royal Society May 1752.
ANTIPATHES, 16, Chonos 45.
GORGONIA (or an allied form), 160, Abrolhos on the coast of Brazil 18, Captain Beechey informed me of this fact in a letter.
Ellis (”Nat. Hist. of Coralline,” page 96) states that Ombellularia was procured in lat.i.tude 79 deg N. STICKING to a LINE from the depth of 236 fathoms; hence this coral either must have been floating loose, or was entangled in stray line at the bottom. Off Keeling atoll a compound Ascidia (Sigillina) was brought up from 39 fathoms, and a piece of sponge, apparently living, from 70, and a fragment of Nullipora also apparently living from 92 fathoms. At a greater depth than 90 fathoms off this coral island, the bottom was thickly strewed with joints of Halimeda and small fragments of other Nulliporae, but all dead. Captain B. Allen, R.N., informs me that in the survey of the West Indies it was noticed that between the depth of 10 and 200 fathoms, the sounding lead very generally came up coated with the dead joints of a Halimeda, of which he showed me specimens. Off Pernambuco, in Brazil, in about twelve fathoms, the bottom was covered with fragments dead and alive of a dull red Nullipora, and I infer from Roussin's chart, that a bottom of this kind extends over a wide area. On the beach, within the coral-reefs of Mauritius, vast quant.i.ties of fragments of Nulliporae were piled up. From these facts it appears, that these simply organized bodies are amongst the most abundant productions of the sea.)
Although the limit of depth, at which each particular kind of coral ceases to exist, is far from being accurately known; yet when we bear in mind the manner in which the clumps of coral gradually became infrequent at about the same depth, and wholly disappeared at a greater depth than twenty fathoms, on the slope round Keeling atoll, on the leeward side of the Mauritius, and at rather less depth, both without and within the atolls of the Maldiva and Chagos Archipelagoes; and when we know that the reefs round these islands do not differ from other coral formations in their form and structure, we may, I think, conclude that in ordinary cases, reef-building polypifers do not flourish at greater depths than between twenty and thirty fathoms.
It has been argued (”Journal of the Royal Geographical Society,” 1831, page 218.) that reefs may possibly rise from very great depths through the means of small corals, first making a platform for the growth of the stronger kinds. This, however, is an arbitrary supposition: it is not always remembered, that in such cases there is an antagonist power in action, namely, the decay of organic bodies, when not protected by a covering of sediment, or by their own rapid growth. We have, moreover, no right to calculate on unlimited time for the acc.u.mulation of small organic bodies into great ma.s.ses. Every fact in geology proclaims that neither the land, nor the bed of the sea retain for indefinite periods the same level. As well might it be imagined that the British Seas would in time become choked up with beds of oysters, or that the numerous small corallines off the inhospitable sh.o.r.es of Tierra del Fuego would in time form a solid and extensive coral-reef.
<script>